Recently clippy warned me result_large_err a few times. I remember I encountered a crate on crates.io, probably a proc_macro, that while derived on an enum, will automatically box enum variant if considered large enough.
Something like
#[derive(AutoBoxLargeVariant)]
pub enum ParseError {
UnparsedBytes([u8; 512]),
UnexpectedEof,
}
will be translated to
pub enum ParseError {
UnparsedBytes(Box<[u8; 512]>),
UnexpectedEof,
}
I think it may be an elegant solution for the result_large_err issue, but failed to recall its name. After some search, the only thing I found relevant was smallbox, which does not quite match my memory.
Related
Trying to figure out how to make an app with RxSwift and exploring multiple open source projects (namely CleanArchitectureRxSwift and SwiftHub) I often find usage of
extension ObservableType {
func asDriverOnErrorJustComplete() -> Driver<E> {
return asDriver { error in
return Driver.empty()
}
}
}
Given that this method is useful in many situation and literally copied in mentioned projects I wonder why is it not a part of some utility library (like for example RxSwiftExt) or even RxSwift itself.
I find it really suspicious that given how many Rx pods there are in SwiftHub Podfile none of them actually contain this function.
My question is that are there any real reasons behind that? Does asDriverOnErrorJustComplete somehow violates come Rx contracts or considered bad practice etc?
Am I biased in sense that those two projects are most likely copied architecture from each other and are not representative? If so, are there any good open source projects that demonstrate RxSwift+MVVM and maybe avoid asDriverOnErrorJustComplete or approach problems solved by asDriverOnErrorJustComplete differently?
I wouldn't call the method bad practice per se but it allows for an error that will get silently ignored which I don't particularly like. Using such a construct is rather pernicious in that your chain will silently fail without any notice at all. It could be a problem if your QA department (you with a different hat on?) doesn't notice the fact that the label isn't updating anymore.
I'm also not a big fan of the particular GitHub repos you call out because they add a lot of IMHO unnecessary boilerplate. I prefer code that is more direct.
In my sample app RxEarthquake, I use the following:
public func asDriverLogError(_ file: StaticString = #file, _ line: UInt = #line) -> SharedSequence<DriverSharingStrategy, E> {
return asDriver(onErrorRecover: { print("Error:", $0, " in file:", file, " atLine:", line); return .empty() })
}
So at least a record of the error is made in debug.
I also think the following is an excellent alternative:
public func asDriverOrAbort(_ file: StaticString = #file, _ line: UInt = #line) -> SharedSequence<DriverSharingStrategy, E> {
return asDriver(onErrorRecover: { fatalError("Error: \($0) in file: \(file) atLine: \(line)") })
}
By using such a method, you are making it clear to the reader that you are absolutely sure that the chain won't produce an error.
I think asDriverOnErrorJustComplete is not included in the standard library, because with any type of observable except void, the application will be crashed when receiving an error.
When I started writing SwiftHub, I couldn’t understand why the application crashes when I got an error from the server :)
It seems that for some reason Swift have chosen to make coding in it less readable by forcing users to remove completion handler parameter labels. I have read the Swift discussion and still think it's a mistake. At least they could have made it optional.
When building using Xcode 8 - is there a way to force the compiler to use Swift 2.3 so I don't get these errors anymore?
I have updated the option to use legacy Swift (under build settings)
but I still seem to get this error:
Function types cannot have argument label 'isloggedIn'; use '_'
instead
How can I keep my labels in my completion handlers?
The Swift designers decided to prohibit argument labels for function types.
The reasoning is explained here: https://github.com/apple/swift-evolution/blob/master/proposals/0111-remove-arg-label-type-significance.md
This is a frustrating and questionable choice, as prohibiting argument labels makes it much easier to incorrectly invoke closures, which seems more important than simplifying the language's type system.
Usability > ideology.
A workaround to consider. You can't do:
func doStuff(completion: (foo: Int, bar: String) -> Void) {
...
completion(foo: 0, bar: "")
}
... but you can do:
func doStuff(completion: ((foo: Int, bar: String)) -> Void) {
...
completion((foo: 0, bar: ""))
}
i.e. have a single unnamed argument to your closure which is a tuple, in this case (foo: Int, bar: String).
It's ugly in its own way, but at least you retain the argument labels.
Based on the information above - it appears that the only way to really fix this and ensure that its performant is to raise a proposal to
Make argument labels optional with a view to :
improving the speed of development ( without argument labels it requires us to scroll up to the top of the method each time we put in the completion handler.
Reduce Errors : ( I have already had several errors caused due to incorrect completion handler entries especially with those that expect boolean values)
Make code more readable across team members. Not everyone has only one team member and thus being able to easily pick up other peoples code is a must have.
Lastly good programming practice means that the solution should look as much like the actual item being developed. completionhandler: (newvalues, nil) looks less like the item being managed than completionhandler(results: newValue, error:nil)
I would love for people reading this to share their feedback/ comments
on this below before I submit it so I can show there are others that
support this.
Edit:
I have submitted the pitch here :
https://lists.swift.org/pipermail/swift-evolution/Week-of-Mon-20161010/028083.html
which appears to have been agreed. It looks like its going to happen, however the discussion is whether this is submitted as a Swift 4 improvement ( highly probable)
You have to use _ to make your parameters unnamed, and that is unfortunate. Instead of tacking _ on to each parameter and then blindly calling your function I would suggest making a wrapper object.
Since losing named parameters for function types introduces more risk that you will call the function with the wrong values, I would suggest wrapping the parameters in a struct and having that be the one and only parameter to your function.
This way the fields of you struct are named, and there is only one type of value to pass into your function. It is more cumbersome than if we were able to name the parameters of the function, but we can't. At least this way you'll be safer and you'll feel less dirty.
struct LineNoteCellState {
var lineNoteText: String?
var printOnInvoice = false
var printOnLabel = false
}
Here is an example of it being used:
cell.configure(editCallback: { (_ state: LineNoteCellState) in
self.lineNoteText = state.lineNoteText
self.printOnInvoice = state.printOnInvoice
self.printOnLabel = state.printOnLabel
})
Semi-workaround, note the _
completion: (_ success: Bool) -> Void
I am trying to implement some code from parse.com and I notice a keyword in after the void.
I am stumped what is this ? The second line you see the Void in
PFUser.logInWithUsernameInBackground("myname", password:"mypass") {
(user: PFUser?, error: NSError?) -> Void in
if user != nil {
// Do stuff after successful login.
} else {
// The login failed. Check error to see why.
}
}
The docs don't document this. I know the in keyword is used in for loops.
Anyone confirm?
In a named function, we declare the parameters and return type in the func declaration line.
func say(s:String)->() {
// body
}
In an anonymous function, there is no func declaration line - it's anonymous! So we do it with an in line at the start of the body instead.
{
(s:String)->() in
// body
}
(That is the full form of an anonymous function. But then Swift has a series of rules allowing the return type, the parameter types, and even the parameter names and the whole in line to be omitted under certain circumstances.)
Closure expression syntax has the following general form:
The question of what purpose in serves has been well-answered by other users here; in summary: in is a keyword defined in the Swift closure syntax as a separator between the function type and the function body in a closure:
{ /parameters and type/ in /function body/ }
But for those who might be wondering "but why specifically the keyword in?", here's a bit of history shared by Joe Groff, Senior Swift Compiler Engineer at Apple, on the Swift forums:
It's my fault, sorry. In the early days of Swift, we had a closure
syntax that was very similar to traditional Javascript:
func (arg: -> Type, arg: Type) -> Return { ... }
While this is nice and regular syntax, it is of course also very bulky
and awkward if you're trying to support expressive functional APIs,
such as map/filter on collections, or if you want libraries to be able
to provide closure-based APIs that feel like extensions of the
language.
Our earliest adopters at Apple complained about this, and mandated
that we support Ruby-style trailing closure syntax. This is tricky to
fit into a C-style syntax like Swift's, and we tried many different
iterations, including literally Ruby's {|args| } syntax, but many of
them suffered from ambiguities or simply distaste and revolt from our
early adopters. We wanted something that still looked like other parts
of the language, but which could be parsed unambiguously and could
span the breadth of use cases from a fully explicit function signature
to extremely compact.
We had already taken in as a keyword, we couldn't use -> like Java
does because it's already used to denote the return type, and we were
concerned that using => like C# would be too visually confusing. in
made xs.map { x in f(x) } look vaguely like for x in xs { f(x) },
and people hated it less than the alternatives.
*Formatting and emphasis mine. And thanks to Nikita Belov's post on the Swift forums for helping my own understanding.
In dart, when developing a web application, if I invoke a method with a wrong number of arguments, the editor shows a warning message, the javascript compilation however runs successfully, and an error is only raised runtime. This is also the case for example if I refer and unexistent variable, or I pass a method argument of the wrong type.
I ask, if the editor already know that things won't work, why is the compilation successful? Why do we have types if they are not checked at compile time? I guess this behaviour has a reason, but I couldn't find it explained anywhere.
In Dart, many programming errors are warnings.
This is for two reasons.
The primary reason is that it allows you to run your program while you are developing it. If some of your code isn't complete yet, or it's only half refactored and still uses the old variable names, you can still test the other half. If you weren't allowed to run the program before it was perfect, that would not be possible.
The other reason is that warnings represent only static type checking, which doesn't know everything about your program, It might be that your program will work, it's just impossible for the analyser to determine.
Example:
class C {
int foo(int x) => x;
}
class D implements C {
num foo(num x, [num defaultValue]) => x == null ? defaultValue : x;
}
void bar(C c) => print(c.foo(4.1, 42)); // Static warning: wrong argument count, bad type.
main() { bar(new D()); } // Program runs fine.
If your program works, it shouldn't be stopped by a pedantic analyser that only knows half the truth. You should still look at the warnings, and consider whether there is something to worry about, but it is perfectly fine to decide that you actually know better than the compiler.
There is no compilation stage. What you see is warning based on type. For example:
This code will have warning:
void main() {
var foo = "";
foo.baz();
}
but this one won't:
void main() {
var foo;
foo.baz();
}
because code analyzer cant deduct the type of foo
I'm trying to write a function that does type casting, which seems to be a frequently occurring activity in Rascal code. But I can't seem to get it right. The following and several variations on it fail.
public &T cast(type[&T] tp, value v) throws str {
if (tp tv := v)
return tv;
else
throw "cast failed";
}
Can someone help me out?
Some more info: I frequently use pattern matching against a pattern of the form "Type Var" (i.e. against a variable declaration) in order to tell Rascal that an expression has a certain type, e.g.
map[str,value] m := myexp
This is usually in cases where I know that myexp has type map[str,value], but omitting the matching would make Rascal's type checking mechanism complain.
In order to be a bit more defensive against mistakes, I usually wrap the matching construct in an if-then-else where an exception is raised if the match fails:
if (map[str,value] m := myexp) {
// use m
} else {
throw "cast failed";
}
I would like to shorten all such similar pieces of code using a single function that does the job generically, so that I can write instead
cast(#map[str,value], myexp)
PS. Also see How to cast a value type to Map in Rascal?
It seems that the best way to write this, if you truly need to do this, is the following:
public map[str,value] cast(map[str,value] v) = v;
public default map[str,value] cast(value v) { throw "cast failed!"; }
Then you could just say
m = cast(myexp);
and it would do what you want to do -- the actual pattern matching is moved into the function signature for cast, with a case specific to the type you are wanting to use and a case that handles everything that doesn't otherwise match.
However, I'm still not sure why you are using type value, either here (inside the map) or in the linked question. The "standard" Rascal way of handling cases where you could have one of multiple choices is to define these with a user-defined data type and constructors. You could then use pattern matching to match the constructors, or use the is and has keywords to interrogate a value to check to see if it was created using a specific constructor or if it has a specific field, respectively. The rule for fields is that all occurrences of a field in the constructor definitions for a given ADT have the same type. So, it may help to know more about your usage scenario to see if this definition of cast is the best option or if there is a better solution to your problem.
EDITED
If you are reading JSON, an alternate way to do it is to use the JSON grammar and AST that also live in that part of the library (I think the one you are using is more of a stream reader, like our current text readers and writers, but I would need to look at the code more to be sure). You can then do something like this (long output included to give an idea of the results):
rascal>import lang::json::\syntax::JSON;
ok
rascal>import lang::json::ast::JSON;
ok
rascal>import lang::json::ast::Implode;
ok
ascal>js = buildAST(parse(#JSONText, |project://rascal/src/org/rascalmpl/library/lang/json/examples/twitter01.json|));
Value: object((
"since_id":integer(0),
"refresh_url":string("?since_id=202744362520678400&q=amsterdam&lang=en"),
"page":integer(1),
"since_id_str":string("0"),
"completed_in":float(0.058),
"results_per_page":integer(25),
"next_page":string("?page=2&max_id=202744362520678400&q=amsterdam&lang=en&rpp=25"),
"max_id_str":string("202744362520678400"),
"query":string("amsterdam"),
"max_id":integer(202744362520678400),
"results":array([
object((
"from_user":string("adekamel"),
"profile_image_url_https":string("https:\\/\\/si0.twimg.com\\/profile_images\\/2206104506\\/339515338_normal.jpg"),
"in_reply_to_status_id_str":string("202730522013728768"),
"to_user_id":integer(215350297),
"from_user_id_str":string("366868475"),
"geo":null(),
"in_reply_to_status_id":integer(202730522013728768),
"profile_image_url":string("http:\\/\\/a0.twimg.com\\/profile_images\\/2206104506\\/339515338_normal.jpg"),
"to_user_id_str":string("215350297"),
"from_user_name":string("nurul amalya \\u1d54\\u1d25\\u1d54"),
"created_at":string("Wed, 16 May 2012 12:56:37 +0000"),
"id_str":string("202744362520678400"),
"text":string("#Donnalita122 #NaishahS #fatihahmS #oishiihotchoc #yummy_DDG #zaimar93 #syedames I\'m here at Amsterdam :O"),
"to_user":string("Donnalita122"),
"metadata":object(("result_type":string("recent"))),
"iso_language_code":string("en"),
"from_user_id":integer(366868475),
"source":string("<a href="http:\\/\\/blackberry.com\\/twitter" rel="nofollow">Twitter for BlackBerry\\u00ae<\\/a>"),
"id":integer(202744362520678400),
"to_user_name":string("Rahmadini Hairuddin")
)),
object((
"from_user":string("kelashby"),
"profile_image_url_https":string("https:\\/\\/si0.twimg.com\\/profile_images\\/1861086809\\/me_beach_normal.JPG"),
"to_user_id":integer(0),
"from_user_id_str":string("291446599"),
"geo":null(),
"profile_image_url":string("http:\\/\\/a0.twimg.com\\/profile_images\\/1861086809\\/me_beach_normal.JPG"),
"to_user_id_str":string("0"),
"from_user_name":string("Kelly Ashby"),
"created_at":string("Wed, 16 May 2012 12:56:25 +0000"),
"id_str":string("202744310872018945"),
"text":string("45 days til freedom! Cannot wait! After Paris: London, maybe Amsterdam, then southern France, then CANADA!!!!"),
"to_user":null(),
"metadata":object(("result_type":string("recent"))),
"iso_language_code":string("en"),
"from_user_id":integer(291446599),
"source":string("<a href="http:\\/\\/mobile.twitter.com" rel="nofollow">Mobile Web<\\/a>"),
"id":integer(202744310872018945),
"to_user_name":null()
)),
object((
"from_user":string("johantolsma"),
"profile_image_url_https":string("https:\\/\\/si0.twimg.com\\/profile_images\\/1961917557\\/image_normal.jpg"),
"to_user_id":integer(0),
"from_user_id_str":string("23632499"),
"geo":null(),
"profile_image_url":string("http:\\/\\/a0.twimg.com\\/profile_images\\/1961917557\\/image_normal.jpg"),
"to_user_id_str":string("0"),
"from_user_name":string("Johan Tolsma"),
"created_at":string("Wed, 16 May 2012 12:56:16 +0000"),
"id_str":string("202744274050236416"),
"text":string("RT #agerolemou: Office space for freelancers in Amsterdam http:\\/\\/t.co\\/6VfHuLeK"),
"to_user":null(),
"metadata":object(("result_type":string("recent"))),
"iso_language_code":string("en"),
"from_user_id":integer(23632499),
"source":string("<a href="http:\\/\\/itunes.apple.com\\/us\\/app\\/twitter\\/id409789998?mt=12" rel="nofollow">Twitter for Mac<\\/a>"),
"id":integer(202744274050236416),
"to_user_name":null()
)),
object((
"from_user":string("hellosophieg"),
"profile_image_url_https":string("https:\\/\\/si0.twimg.com\\/profile_images\\/2213055219\\/image_normal.jpg"),
"to_user_id":integer(0),
"from_user_id_str":string("41153106"),
"geo":null(),
"profile_image_url":string("http:\\/\\/a0.twimg.com\\/profile_images\\/2213055219\\/image_normal.jp...
rascal>js is object;
bool: true
rascal>js.members<0>;
set[str]: {"since_id","refresh_url","page","since_id_str","completed_in","results_per_page","next_page","max_id_str","query","max_id","results"}
rascal>js.members["results_per_page"];
Value: integer(25)
You can then use pattern matching, over the types defined in lang::json::ast::json, to extract the information you need.
The code has a bug. This is the fixed code:
public &T cast(type[&T] tp, value v) throws str {
if (&T tv := v)
return tv;
else
throw "cast failed";
}
Note that we do not wish to include this in the standard library. Rather lets collect cases where we need it and find out how to fix it in another way.
If you find you need this casting often, then you might be avoiding the better parts of Rascal, such as pattern based dispatch. See also the answer by Mark Hills.