Is there a reason running CI builds on kubernetes cluster? - jenkins

I don't know much about kubernetes, but as far as I know, it is a system that enables you to control and manage containerized applications. So, generally speaking, the essence of the benefit that we get from kubernetes is the ability to "tell" kubernetes what containers we want running, how many of them, on which machines, among other details, and kubernetes will take care of doing that for us. Is that correct?
If so, I just can't see the benefit of running a CI pipeline using a kubernetes pod, as I understand that some people do. Let's say you have your build tools on Docker containers instead of having them installed on a specific machine, that's great - you can just use those containers in the build process, why kubernetes? Is there any performance gain or something like this?
Appreciate some insights.

It is highly recommended to get a good understanding of what Kubernetes is and what it can and cannot do.
Generally, containers combined with an orchestration tools can provide a better management of your machines and services. It can significantly improve the reliability of your application and reduce the time and resources spent on DevOps.
Some of the features worth noting are:
Horizontal infrastructure scaling: New servers can be added or removed easily.
Auto-scaling: Automatically change the number of running containers, based on CPU utilization or other application-provided metrics.
Manual scaling: Manually scale the number of running containers through a command or the interface.
Replication controller: The replication controller makes sure your cluster has an equal amount of pods running. If there are too many pods, the replication controller terminates the extra pods. If there are too few, it starts more pods.
Health checks and self-healing: Kubernetes can check the health of nodes and containers ensuring your application doesn’t run into any failures. Kubernetes also offers self-healing and auto-replacement so you don’t need to worry about if a container or pod fails.
Traffic routing and load balancing: Traffic routing sends requests to the appropriate containers. Kubernetes also comes with built-in load balancers so you can balance resources in order to respond to outages or periods of high traffic.
Automated rollouts and rollbacks: Kubernetes handles rollouts for new versions or updates without downtime while monitoring the containers’ health. In case the rollout doesn’t go well, it automatically rolls back.
Canary Deployments: Canary deployments enable you to test the new deployment in production in parallel with the previous version.
However you should also know what Kubernetes is not:
Kubernetes is not a traditional, all-inclusive PaaS (Platform as a
Service) system. Since Kubernetes operates at the container level
rather than at the hardware level, it provides some generally
applicable features common to PaaS offerings, such as deployment,
scaling, load balancing, and lets users integrate their logging,
monitoring, and alerting solutions. However, Kubernetes is not
monolithic, and these default solutions are optional and pluggable.
Kubernetes provides the building blocks for building developer
platforms, but preserves user choice and flexibility where it is
important.
Especially in your use case note that Kubernetes:
Does not deploy source code and does not build your application.
Continuous Integration, Delivery, and Deployment (CI/CD) workflows are
determined by organization cultures and preferences as well as
technical requirements.
The decision is yours but having in mind the main concepts above will help you make it.

An important detail is that you do not tell Kubernetes what nodes a given pod should run on; it picks itself, and if the cluster is low on resources, in many cases it can actually allocate more nodes on its own (via the cluster autoscaler).
So if your CI system is fairly busy, and uses all containers for everything, it could make more sense to run an individual build job as a Kubernetes Job. If you have 100 builds that all start at the same time, it's possible for the cluster to give itself more hardware, and the build queue will clear out faster. Particularly if you're using Kubernetes for other tasks, this can save you same administrative effort over maintaining a dedicated pool of CI-system workers that need to be separately updated and will sit mostly idle until that big set of builds arrives.
Kubernetes's security settings are also substantially better than Docker's. Say your CI system needs to launch containers as part of a build. In Kubernetes, it can run under a service account, and be given permissions to create and delete deployments in a specific namespace, and nothing else. In Docker the standard approach is to give your CI system access to the host's Docker socket, but this can be easily exploited to take over the host.

Related

Kubernetes Architecture / Design /?

I’m trying to figure out and learn the patterns and best practices on moving a bunch of Docker containers I have for an application into Kubernetes. Things like, pod design, services, deployments, etc. For example, I could create a Pod with the single web and application containers in them, but that’d not be a good design.
Searching for things like architecture and design with Kubernetes just seems to yield topics on the product’s architecture or how to implement a Kubernetes cluster, and not the overlay of designing the pods, services, etc.
What does the community generally refer to this application later design in the Kubernetes world, and can anyone refer me to a 101 on this topic please?
Thanks.
Kubernetes is a complex system, and learning step by step is the best way to gain expertise. What I recommend you is documentation about Kubernetes, from where you can learn about each of components.
Another good option is to review 70 best K8S tutorials, which are categorized in many ways.
Designing and running applications with scalability, portability, and robustness in mind can be challenging. Here are great resources about it:
Architecting applications for Kubernetes
Using Kubernetes in production, lessons learned
Kubernetes Design Principles from Google
Well, there's no Kubernetes approach but rather a Cloud Native one: I would suggest you Designing Distributed Systems: patterns and paradigms by Brendan Burns.
It's really good because it provides several scenarios along with pattern approached and related code.
Most of the examples are obviously based on Kubernetes but I think that the implementation is not so important, since you have to understand why and when to use an Ambassador pattern or a FaaS according to the application needs.
The answer to this can be quite complex and that's why it is important that software/platform architects understand K8s well.
Mostly you will find an answer on that which tells you "put each application component in a single pod". And basically that's correct as the main reason for K8s is high availability, fault tolerance of the infrastructure and things like this. This leads us to, if you put every single component to a single pod and make it with a replica higher than 2 its will reach a batter availability.
But you also need to know why you want to go to K8s. At the moment it is a trending topic. But if you don't want to Ops a cluster and actually don't need HA or so, why you don't run on stuff like AWS ECS, Digital Ocean droplets and co?
Best answers you will currently find are all around how to design and cut microservices as each microservice could be represented in a pod. Also, a good starting point is from RedHat Principles of container-based Application Design
or InfoQ.
Un kubernetes cluster is composed of:
A master server called control plane
Nodes: nodes which execute the applications / Containers or pods
By design, a production kubernetes cluster must have at least a master server and 2 nodes according to the kubernetes documentation.
Here is a summary of the components of a kubernetes cluster:
Master = control plane:
kube-api-server: expose the kubernetes api
etcd: key values store ​​for the cluster
kube-scheduler: distributed the pods on the nodes
kube-controller-manager: controller of nodes, pods, cluster components.
Nodes = Servers that run applications
Kubelet: runs on each node, It makes sure that the containers are running in a pod.
kube-proxy: Allows the pods to communicate in the cluster and outside
Runtine container: allows to run the containers / pods
Complementary modules = addons
DNS: DNS server that serves DNS records for Kubernetes services.
Webui: Graphical dashboard for the cluster
Container Resource Monitoring: Records metrics on containers in a central DB, provides UI to browse them
Cluster-level Logging: Records container logs in a central log with a search / browse interface.

Apache Hadoop Yarn vs. Kubernetes

Since versions 2.6 (Apache Hadoop) Yarn handles docker containers. Basically it distributes the requested amount of containers on a Hadoop cluster, restart failed containers and so on.
Kubernetes seemed to do the same.
Where are the major differences?
Kubernetes is developed almost from a clean slate for extending Docker container kernel to become a platform. Kubernetes development has taken bottom up approach. It has good optimization on specifying per container/pod resource requirements, but it lacks a effective global scheduler that can partition resources into logical grouping. Kubernetes design allows multiple schedulers to run in the cluster. Each scheduler manages resources within its own pods. However, Kubernetes cluster can suffer from instability when application demands more resources than physical systems can handle. It work best in infrastructure capacity exceeding application demands. Kubernetes scheduler will attempt to fill up the idle nodes with incoming application requests
and terminate low priority and starvation containers to improve resource utilization. Kubernetes containers can integrate with external storage system like S3 to provide resilience to data. Kubernetes framework uses etcd to store cluster data. Etcd cluster nodes and Hadoop Namenode are both single point of failures in Kubernetes or Hadoop platform. Etcd can have more replica than Namenode, hence, from reliability point of view seems to favor Kubernetes in theory. However, Kubernetes security is default open, unless RBAC are defined with fine-grained role binding. Security context is set correctly for pods. If omitted, primary group of the pod will default to root, which can be problematic for system administrators trying to secure the infrastructure.
Apache Hadoop YARN was developed to run isolated java processes to process big data workload then improved to support Docker containers. YARN provides global level resource management like capacity queues for partitioning physical resources into logical units. Each business unit can be assigned with percentage of the cluster resources. Capacity resource sharing system is designed in favor of guarentee resource
availability for Enterprise priority instead of squeezing every available physical resources. YARN does score more points in security. There are more
security featuers in Kerberos, access control for privileged/non-privileged containers, trusted docker images, and placement policy constraints. Most docker
related security are default to close, and system admin needs to manually turn on flags to grant more power to containers. Large enterprises tend to run Hadoop more
than Kubernetes because securing the system cost less. There are more distributed SQL engines built on top of YARN, including Hive, Impala, SparkSQL and IBM BigSQL.
Database options make YARN an attrative option because the ability to run online transaction processing in containers, and online analytical processing using batch workload. Hadoop Developer toolchains can be overwhelming. Mapreduce, Hive, Pig, Spark and etc, each have its own style of development. The user experience is inconsistent and take a while to learn them all. Kubernetes feels less obstructive by comparison because it only deploys docker containers. With introduction of YARN services to run
Docker container workload, YARN can feel less wordy than Kubernetes.
If your plan is to out source IT operations to public cloud, pick Kubernetes. If your plan is to build private/hybrid/multi-clouds, pick Apache YARN.
While this question and answer isn't exactly what you are asking, it does touch on a number of the same points.
Last I saw, Yarn was just a resource sharing mechanism, whereas Kubernetes is an entire platform, encompassing ConfigMaps, declarative environment management, Secret management, Volume Mounts, a super well designed API for interacting with all of those things, Role Based Access Control, and Kubernetes is in wide-spread use, meaning one can very easily find both candidates to hire and tools to buy.
A blog post I found cited a master's thesis that describes some of the fascinating trade-offs between the different scheduler's view of the world. It's a lot of words, so if you're looking for a tl;dr answer, that link may not be it, but if you're looking for actual research on the topic, it seems sound.

Automated deployment of a dockerized application on a single machine

I have a web application consisting of a few services - web, DB and a job queue/worker. I host everything on a single Google VM and my deployment process is very simple and naive:
I manually install all services like the database on the VM
a bash script scheduled by crontab polls a remote git repository for changes every N minutes
if there were changes, it would simply restart all services using supervisord (job queue, web, etc)
Now, I am starting a new web project where I enjoy using docker-compose for local development. However, I seem to suck in analysis paralysis deciding between available options for production deployment - I looked at Kubernetes, Swarm, docker-compose, container registries and etc.
I am looking for a recipe that will keep me productive with a single machine deployment. Ideally, I should be able to scale it to multiple machines when the time comes, but simplicity and staying frugal (one machine) is more important for now. I want to consider 2 options - when the VM already exists and when a new bare VM can be allocated specifically for this application.
I wonder if docker-compose is a reasonable choice for a simple web application. Do people use it in production and if so, how does the entire process look like from bare VM to rolling out an updated application? Do people use Kubernetes or Swarm for a simple single-machine deployment or is it an overkill?
I wonder if docker-compose is a reasonable choice for a simple web application.
It can be, sure, if the development time is best spent focused on the web application and less on the non-web stuff such as the job queue and database. The other asterisk is whether the development environment works ok with hot-reloads or port-forwarding and that kind of jazz. I say it's a reasonable choice because 99% of the work of creating an application suitable for use in a clustered environment is the work of containerizing the application. So if the app already works under docker-compose, then it is with high likelihood that you can take the docker image that is constructed on behalf of docker-compose and roll it out to the cluster.
Do people use it in production
I hope not; I am sure there are people who use docker-compose to run in production, just like there are people that use Windows batch files to deploy, but don't be that person.
Do people use Kubernetes or Swarm for a simple single-machine deployment or is it an overkill?
Similarly, don't be a person that deploys the entire application on a single virtual machine or be mentally prepared for one failure to wipe out everything that you value. That's part of what clustering technologies are designed to protect against: one mistake taking down the entirety of the application, web, queuing, and persistence all in one fell swoop.
Now whether deploying kubernetes for your situation is "overkill" or not depends on whether you get benefit from the other things that kubernetes brings aside from mere scaling. We get benefit from developer empowerment, log aggregation, CPU and resource limits, the ability to take down one Node without introducing any drama, secrets management, configuration management, using a small number of Nodes for a large number of hosted applications (unlike creating a single virtual machine per deployed application because the deployments have no discipline over the placement of config file or ports or whatever). I can keep going, because kubernetes is truly magical; but, as many people will point out, it is not zero human cost to successfully run a cluster.
Many companies I have worked with are shifting their entire production environment towards Kubernetes. That makes sense because all cloud providers are currently pushing Kubernetes and we can be quite positive about Kubernetes being the future of cloud-based deployment. If your application is meant to run in any private or public cloud, I would personally choose Kubernetes as operating platform for it. If you plan to add additional services, you will be easily able to connect them and scale your infrastructure with a growing number of requests to your application. However, if you already know that you do not expect to scale your application, it may be over-powered to use a Kubernetes cluster to run it although Google Cloud etc. make it fairly easy to setup such a cluster with a few clicks.
Regarding an automated development workflow for Kubernetes, you can take a look at my answer to this question: How to best utilize Kubernetes/minikube DNS for local development

Does it makes sense to manage Docker containers of a/few single hosts with Kubernetes?

I'm using docker on a bare metal server. I'm pretty happy with docker-compose to configure and setup applications.
Still some features are missing, like configuration management and monitoring maybe there are other solutions to solve this issues but I'm a bit overwhelmed by the feature set of Kubernetes and can't judge if it would help me here.
I'm also open for recommendations to solve the requirements separately:
Configuration / Secret management
Monitoring of my docker hostes applications (e.g. having some kind of dashboard)
Remot container control (SSH is okay with only one Server)
Being ready to scale my environment (based on multiple different Dockerized applications) to more than one server in future - already thinking about networking/service discovery issues with a pure docker-compose setup
I'm sure Kubernetes covers some of these features, but I have the feeling that it's too much focused on Cloud platforms where Machines are created on the fly (since I only have at most few bare metal Servers)
I hope the questions scope is not too broad, else please use the comment section and help me to narrow down the question.
Thanks.
I think the Kubernetes is absolutely much your requests and it is what you need.
Let's start one by one.
I have the feeling that it's too much focused on Cloud platforms where Machines are created on the fly (since I only have at most few bare metal Servers)
No, it is not focused on Clouds. Kubernates can be installed almost on any bare-metal platform (include ARM) and have many tools and instructions which can help you to do it. Also, it is easy to deploy it on your local PC using Minikube, which will prepare local cluster for you within VMs or right in your OS (only for Linux).
Configuration / Secret management
Kubernates has a powerful configuration and management based on special objects which can be attached to your containers. You can read more about configuration management in that article.
Moreover, some tools like Helm can provide you more automation and range of preconfigured applications, which you can install using a single command. And you can prepare your own charts for it.
Monitoring of my docker hostes applications (e.g. having some kind of dashboard)
Kubernetes has its own dashboard where you can get many kinds of information: current applications status, configuration, statistics and many more. Also, Kubernetes has great integration with Heapster which can be used with Grafana for powerful visualization of almost anything.
Remot container control (SSH is okay with only one Server)
Kubernetes controlling tool kubectl can get logs and connect to containers in the cluster without any problems. As an example, to connect a container "myapp" you just need to call kubectl exec -it myapp sh, and you will get sh session in the container. Also, you can connect to any application inside your cluster using kubectl proxy command, which will forward a port you need to your PC.
Being ready to scale my environment (based on multiple different Dockerized applications) to more than one server in future - already thinking about networking/service discovery issues with a pure docker-compose setup
Kubernetes can be scaled up to thousands of nodes. Or can have only one. It is your choice. Independent of a cluster size, you will get production-grade networking, service discovery and load balancing.
So, do not afraid, just try to use it locally with Minikube. It will make many of operation tasks more simple, not more complex.

When not to deploy containerized application on kubernetes

There are many reasons for deploying containerized application on kubernetes. But we may get overwhelmed with its usefulness and start deploying applications when it should not.
Can there be a case when deploying a application on kubernetes would not add any value and in fact it would be disadvantageous?
To be specific and take an example, would deploying support tool like jenkins on kubernetes be a wrong decision, if scaling and high availability is not really a concern.
Deploying Jenkins or other services on kubernetes can be a good decision if you'd like an existing k8 infrastructure to monitor and manage those pods for you. There is more to k8 than scaling. Running two pods can provide higher availability for example. Maybe you dont need to scale, but you really do not want any downtime. Also, things like rolling updates, etc can be useful in some situations.
I'm finding that deploying anything that requires complex individual configuration and especially data persistence is not awesome in k8 currently. PetSets is aiming to change that but is only Alpha at this point in time.
I suggest avoiding deploying complex database like Cassandra and Vertica in K8. I'd also avoid deploying Elasticsearch, Zookeeper, and Kafka systems in K8. These all require individual node configuration and data persistence that currently will cause you more grief than benefit in my experience.

Resources