haskell parsing contextfree-grammar to compare with a string - parsing

I'm trying to represent a context-free grammar which I would like to parse for comparing a String with the "A" of Prod "A" [NT "B", NT "C"], but I don't know how, could someone please help me?
data Symbol a b = T a | NT b
deriving (Eq,Show)
data Produktion a b = Prod b [Symbol a b]
deriving (Eq,Show)
type Produktionen a b = [Produktion a b]
liste11 = [Prod "A" [NT "B", NT "C"]
,Prod "B" [NT "D", NT "E"]
,Prod "D" [T "d"]
] --

There are easier ways but a primitive approach can be
fromNT :: (Symbol a b) -> b
fromNT (NT b) = b
fromNT (T a) = undefined
extractNT :: (Eq b) => b -> [Produktion a b] -> [[b]]
extractNT _ [] = [[]]
extractNT b (p:ps) | is p = (map fromNT (symbol p)) : extractNT b ps
| otherwise = []
where is (Prod x xs) = x==b
symbol (Prod _ xs) = xs
now you can write
> extractNT "A" liste11
[["B","C"]]
UPDATE
I don't think it will work for generic types but for String String
value :: (Symbol String String) -> String
value (T a) = a
value (NT b) = b
the other accessors can still be generic
symbol :: (Produktion a b) -> [Symbol a b]
symbol (Prod _ ss) = ss
tag :: (Produktion a b) -> b
tag (Prod b _) = b
you can now say
> map (map value) $ map symbol $ filter (\p -> tag p=="D") liste11
[["d"]]
> map (map value) $ map symbol $ filter (\p -> tag p=="A") liste11
[["B","C"]]

Related

Apply parser n times vs on the first n characters (Haskell)

I am studying parsers in Haskell following definitions from G. Hutton, E. Meijer - Monadic Parsing in Haskell.
data Parser a = Parser { parseWith :: String -> [(a, String)] }
instance Functor Parser where
fmap f (Parser p) = Parser $ \s -> [(f a, rest) | (a, rest) <- p s]
instance Applicative Parser where
pure x = Parser $ \s -> [(x, s)]
(Parser p1) <*> (Parser p2) = Parser $ \s -> [(f x, r2) | (f, r1) <- p1 s, (x, r2) <- p2 r1]
instance Monad Parser where
return = pure
p >>= f = Parser $ \s -> concatMap (\(x, r) -> parseWith (f x) r) $ parseWith p s
instance Alternative Parser where
empty = failure
p1 <|> p2 = Parser $ \s ->
case parseWith p1 s of
[] -> parseWith p2 s
res -> res
Essentially I have a (parsed :: a, remaining :: String) context.
As a simple application, I defined the following ADT to parse:
data Arr = Arr Int [Int] -- len [values]
and a parser that can construct Array values from strings, e.g.:
"5|12345" -> Arr 5 [1,2,3,4,5]
First, in order to parse n such Array values (the string input contains n on the first position), e.g.:
"2 3|123 4|9876 2|55" -> [Arr 3 [1,2,3], Arr 4 [9,8,7,6]]
I can do the following:
arrayParse :: Parser Arr
arrayParse = do
len <- digitParse
vals <- exactly len digitParse
return $ Arr len vals
nArraysParse :: Parser [Arr]
nArraysParse = do
n <- digitParse
exactly n arrayParse
where exactly n p constructs a new parser by applying p n times.
Next, I want to parse a different scheme.
Suppose the first character denotes the length of the sub-string defining the arrays, e.g.:
"9 3|123 4|9876 2|55" -> [Arr 3 [1,2,3], Arr 4 [9,8,7,6]]
Meaning that I have to apply arrayParse on the first n chars (excluding | and whitespace) to get the first 2 arrays:
3|123 -> 4 chars (excluding | and whitespace)
4|9876 -> 5 chars (excluding | and whitespace)
So, it's straightforward to apply a parser n times:
exactly :: Int -> Parser a -> Parser [a]
exactly 0 _ = pure []
exactly n p = do
v <- p -- apply parser p once
v' <- exactly (n-1) p -- apply parser p n-1 times
return (v:v')
but how can I express the intent of applying a parser on the first n characters?
My initial approach was something like this:
foo :: Parser [Arr]
foo = do
n <- digitParse
substring <- consume n
-- what to do with substring?
-- can I apply arrayParse on it?
How should I approach this?
Following #jlwoodwa's advice, I managed to achieve the following:
innerParse :: Parser a -> String -> Parser a
innerParse p s = case parseWith p s of
[(arr, "")] -> return arr
_ -> failure
substringParse :: Parser [Arr]
substringParse = do
n <- digitParse
substring <- consume n
innerParse (zeroOrMore arrayParse) substring
which works for my use-case.

Stack overflow with two functions calling each other in Applicative parser

I'm doing data61's course: https://github.com/data61/fp-course. In the parser one, the following implementation will cause parse (list1 (character *> valueParser 'v')) "abc" stack overflow.
Existing code:
data List t =
Nil
| t :. List t
deriving (Eq, Ord)
-- Right-associative
infixr 5 :.
type Input = Chars
data ParseResult a =
UnexpectedEof
| ExpectedEof Input
| UnexpectedChar Char
| UnexpectedString Chars
| Result Input a
deriving Eq
instance Show a => Show (ParseResult a) where
show UnexpectedEof =
"Unexpected end of stream"
show (ExpectedEof i) =
stringconcat ["Expected end of stream, but got >", show i, "<"]
show (UnexpectedChar c) =
stringconcat ["Unexpected character: ", show [c]]
show (UnexpectedString s) =
stringconcat ["Unexpected string: ", show s]
show (Result i a) =
stringconcat ["Result >", hlist i, "< ", show a]
instance Functor ParseResult where
_ <$> UnexpectedEof =
UnexpectedEof
_ <$> ExpectedEof i =
ExpectedEof i
_ <$> UnexpectedChar c =
UnexpectedChar c
_ <$> UnexpectedString s =
UnexpectedString s
f <$> Result i a =
Result i (f a)
-- Function to determine is a parse result is an error.
isErrorResult ::
ParseResult a
-> Bool
isErrorResult (Result _ _) =
False
isErrorResult UnexpectedEof =
True
isErrorResult (ExpectedEof _) =
True
isErrorResult (UnexpectedChar _) =
True
isErrorResult (UnexpectedString _) =
True
-- | Runs the given function on a successful parse result. Otherwise return the same failing parse result.
onResult ::
ParseResult a
-> (Input -> a -> ParseResult b)
-> ParseResult b
onResult UnexpectedEof _ =
UnexpectedEof
onResult (ExpectedEof i) _ =
ExpectedEof i
onResult (UnexpectedChar c) _ =
UnexpectedChar c
onResult (UnexpectedString s) _ =
UnexpectedString s
onResult (Result i a) k =
k i a
data Parser a = P (Input -> ParseResult a)
parse ::
Parser a
-> Input
-> ParseResult a
parse (P p) =
p
-- | Produces a parser that always fails with #UnexpectedChar# using the given character.
unexpectedCharParser ::
Char
-> Parser a
unexpectedCharParser c =
P (\_ -> UnexpectedChar c)
--- | Return a parser that always returns the given parse result.
---
--- >>> isErrorResult (parse (constantParser UnexpectedEof) "abc")
--- True
constantParser ::
ParseResult a
-> Parser a
constantParser =
P . const
-- | Return a parser that succeeds with a character off the input or fails with an error if the input is empty.
--
-- >>> parse character "abc"
-- Result >bc< 'a'
--
-- >>> isErrorResult (parse character "")
-- True
character ::
Parser Char
character = P p
where p Nil = UnexpectedString Nil
p (a :. as) = Result as a
-- | Parsers can map.
-- Write a Functor instance for a #Parser#.
--
-- >>> parse (toUpper <$> character) "amz"
-- Result >mz< 'A'
instance Functor Parser where
(<$>) ::
(a -> b)
-> Parser a
-> Parser b
f <$> P p = P p'
where p' input = f <$> p input
-- | Return a parser that always succeeds with the given value and consumes no input.
--
-- >>> parse (valueParser 3) "abc"
-- Result >abc< 3
valueParser ::
a
-> Parser a
valueParser a = P p
where p input = Result input a
-- | Return a parser that tries the first parser for a successful value.
--
-- * If the first parser succeeds then use this parser.
--
-- * If the first parser fails, try the second parser.
--
-- >>> parse (character ||| valueParser 'v') ""
-- Result >< 'v'
--
-- >>> parse (constantParser UnexpectedEof ||| valueParser 'v') ""
-- Result >< 'v'
--
-- >>> parse (character ||| valueParser 'v') "abc"
-- Result >bc< 'a'
--
-- >>> parse (constantParser UnexpectedEof ||| valueParser 'v') "abc"
-- Result >abc< 'v'
(|||) ::
Parser a
-> Parser a
-> Parser a
P a ||| P b = P c
where c input
| isErrorResult resultA = b input
| otherwise = resultA
where resultA = a input
infixl 3 |||
My code:
instance Monad Parser where
(=<<) ::
(a -> Parser b)
-> Parser a
-> Parser b
f =<< P a = P p
where p input = onResult (a input) (\i r -> parse (f r) i)
instance Applicative Parser where
(<*>) ::
Parser (a -> b)
-> Parser a
-> Parser b
P f <*> P a = P b
where b input = onResult (f input) (\i f' -> f' <$> a i)
list ::
Parser a
-> Parser (List a)
list p = list1 p ||| pure Nil
list1 ::
Parser a
-> Parser (List a)
list1 p = (:.) <$> p <*> list p
However, if I change list to not use list1, or use =<< in list1, it works fine. It also works if <*> uses =<<. I feel like it might be an issue with tail recursion.
UPDATE:
If I use lazy pattern matching here
P f <*> ~(P a) = P b
where b input = onResult (f input) (\i f' -> f' <$> a i)
It works fine. Pattern matching here is the problem. I don't understand this... Please help!
If I use lazy pattern matching P f <*> ~(P a) = ... then it works fine. Why?
This very issue was discussed recently. You could also fix it by using newtype instead of data: newtype Parser a = P (Input -> ParseResult a).(*)
The definition of list1 wants to know both parser arguments to <*>, but actually when the first will fail (when input is exhausted) we don't need to know the second! But since we force it, it will force its second argument, and that one will force its second parser, ad infinitum.(**) That is, p will fail when input is exhausted, but we have list1 p = (:.) <$> p <*> list p which forces list p even though it won't run when the preceding p fails. That's the reason for the infinite looping, and why your fix with the lazy pattern works.
What is the difference between data and newtype in terms of laziness?
(*)newtype'd type always has only one data constructor, and pattern matching on it does not actually force the value, so it is implicitly like a lazy pattern. Try newtype P = P Int, let foo (P i) = 42 in foo undefined and see that it works.
(**) This happens when the parser is still prepared, composed; before the combined, composed parser even gets to run on the actual input. This means there's yet another, third way to fix the problem: define
list1 p = (:.) <$> p <*> P (\s -> parse (list p) s)
This should work regardless of the laziness of <*> and whether data or newtype was used.
Intriguingly, the above definition means that the parser will be actually created during run time, depending on the input, which is the defining characteristic of Monad, not Applicative which is supposed to be known statically, in advance. But the difference here is that the Applicative depends on the hidden state of input, and not on the "returned" value.

Railway Oriented Programming and partial application

I like using ROP when I have to deal with IO/Parsing strings/...
However let's say that I have a function taking 2 parameters. How can you do clean/readable partial application when your 2 parameters are already a Result<'a,'b> (not necessary same 'a, 'b)?
For now, what I do is that I use tuple to pass parameters and use the function below to get a Result of a tuple so I can then bind my function with this "tuple-parameter".
/// Transform a tuple of Result in a Result of tuple
let tupleAllResult x =
match (fst x, snd x) with
| Result.Ok a, Result.Ok b -> (a,b) |> Result.Ok
| Result.Ok a, Result.Error b -> b |> Result.Error
| Result.Error a, _ -> a |> Result.Error
let f (a: 'T, b: 'U) = // something
(A, B) |> tupleAllResult
|> (Result.bind f)
Any good idea?
Here what I wrote, which works but might not be the most elegant
let resultFunc (f: Result<('a -> Result<'b, 'c>), 'd>) a =
match f with
| Result.Ok g -> (g a) |> Result.Ok |> Result.flatten
| Result.Error e -> e |> Result.Error |> Result.flatten
I am not seeing partial application in your example, a concept related to currying and argument passing -- that's why I am assuming that you are after the monadic apply, in that you want to transform a function wrapped as a Result value into a function that takes a Result and returns another Result.
let (.>>.) aR bR = // This is "tupleAllResult" under a different name
match aR, bR with
| Ok a, Ok b -> Ok(a, b)
| Error e, _ | _, Error e -> Error e
// val ( .>>. ) : aR:Result<'a,'b> -> bR:Result<'c,'b> -> Result<('a * 'c),'b>
let (<*>) fR xR = // This is another name for "apply"
(fR .>>. xR) |> Result.map (fun (f, x) -> f x)
// val ( <*> ) : fR:Result<('a -> 'b),'c> -> xR:Result<'a,'c> -> Result<'b,'c>
The difference to what you have in your question is map instead of bind in the last line.
Now you can start to lift functions into the Result world:
let lift2 f xR yR =
Ok f <*> xR <*> yR
// val lift2 :
// f:('a -> 'b -> 'c) -> xR:Result<'a,'d> -> yR:Result<'b,'d> -> Result<'c,'d>
let res : Result<_,unit> = lift2 (+) (Ok 1) (Ok 2)
// val res : Result<int,unit> = Ok 3

Haskell: Graham Hutton Book Parsing (Ch-8): What does `parse (f v) out` do, and how does it do it?

My question is about Graham Hutton's book Programming in Haskell 1st Ed.
There is a parser created in section 8.4, and I am assuming anyone answering has the book or can see the link to slide 8 in the link above.
A basic parser called item is described as:
type Parser a = String -> [(a, String)]
item :: Parser Char
item = \inp -> case inp of
[] -> []
(x:xs) -> [(x,xs)]
which is used with do to define another parser p (the do parser)
p :: Parser (Char, Char)
p = do x <- item
item
y <- item
return (x,y)
the relevant bind definition is:
(>>=) :: Parser a -> (a -> Parser b) -> Parser b
p >>= f = \inp -> case parse p inp of
[] -> []
[(v,out)] -> parse (f v) out
return is defined as:
return :: a -> Parser a
return v = \inp -> [(v,inp)]
parse is defined as:
parse :: Parser a -> String -> [(a,String)]
parse p inp = p inp
The program (the do parser) takes a string and selects the 1st and 3rd characters and returns them in a tuple with the remainder of the string in a list, e.g., "abcdef" produces [('a','c'), "def"].
I want to know how the
(f v) out
in
[(v,out)] -> parse (f v) out
returns a parser which is then applied to out.
f in the do parser is item and item taking a character 'c' returns [('c',[])]?
How can that be a parser and how can it take out as an argument?
Perhaps I am just not understanding what (f v) does.
Also how does the do parser 'drop' the returned values each time to operate on the rest of the input string when item is called again?
What is the object that works its way through the do parser, and how is it altered at each step, and by what means is it altered?
f v produces a Parser b because f is a function of type a -> Parser b and v is a value of type a. So then you're calling parse with this Parser b and the string out as arguments.
F in the 'do' parser is item
No, it's not. Let's consider a simplified (albeit now somewhat pointless) version of your parser:
p = do x <- item
return x
This will desugar to:
p = item >>= \x -> return x
So the right operand of >>=, i.e. f, is \x -> return x, not item.
Also how does the 'do' parser 'drop' the returned values each time to operate on the rest of the input string when item is called again? What is the object that works its way through the 'do' parser and how is it altered and each step and by what means is it altered?
When you apply a parser it returns a tuple containing the parsed value and a string representing the rest of the input. If you look at item for example, the second element of the tuple will be xs which is the tail of the input string (i.e. a string containing all characters of the input string except the first). This second part of the tuple will be what's fed as the new input to subsequent parsers (as per [(v,out)] -> parse (f v) out), so that way each successive parser will take as input the string that the previous parser produced as the second part of its output tuple (which will be a suffix of its input).
In response to your comments:
When you write "p = item >>= \x -> return x", is that the equivalent of just the first line "p = do x <- item"?
No, it's equivalent to the entire do-block (i.e. do {x <- item; return x}). You can't translate do-blocks line-by-line like that. do { x <- foo; rest } is equivalent to foo >>= \x -> do {rest}, so you'll always have the rest of the do-block as part of the right operand of >>=.
but not how that reduces to simply making 'out' available as the input for the next line. What is parse doing if the next line of the 'do' parser is a the item parser?
Let's walk through an example where we invoke item twice (this is like your p, but without the middle item). In the below I'll use === to denote that the expressions above and below the === are equivalent.
do x <- item
y <- item
return (x, y)
=== -- Desugaring do
item >>= \x -> item >>= \y -> return (x, y)
=== -- Inserting the definition of >>= for outer >>=
\inp -> case parse item inp of
[] -> []
[(v,out)] -> parse (item >>= \y -> return (v, y)) out
Now let's apply this to the input "ab":
case parse item "ab" of
[] -> []
[(v,out)] -> parse (item >>= \y -> return (v, y)) out
=== Insert defintiion of `parse`
case item "ab" of
[] -> []
[(v,out)] -> parse (item >>= \y -> return (v, y)) out
=== Insert definition of item
case ('a', "b") of
[] -> []
[(v,out)] -> parse (item >>= \y -> return (v, y)) out
===
parse (item >>= \y -> return ('a', y)) out
Now we can expand the second >>= the same we did the fist and eventually end up with ('a', 'b').
The relevant advice is, Don't panic (meaning, don't rush it; or, take it slow), and, Follow the types.
First of all, Parsers
type Parser a = String -> [(a,String)]
are functions from String to lists of pairings of result values of type a and the leftover Strings (because type defines type synonyms, not new types like data or newtype do).
That leftovers string will be used as input for the next parsing step. That's the main thing about it here.
You are asking, in
p >>= f = \inp -> case (parse p inp) of
[] -> []
[(v,out)] -> parse (f v) out
how the (f v) in [(v,out)] -> parse (f v) out returns a parser which is then applied to out?
The answer is, f's type says that it does so:
(>>=) :: Parser a -> (a -> Parser b) -> Parser b -- or, the equivalent
(>>=) :: Parser a -> (a -> Parser b) -> (String -> [(b,String)])
-- p f inp
We have f :: a -> Parser b, so that's just what it does: applied to a value of type a it returns a value of type Parser b. Or equivalently,
f :: a -> (String -> [(b,String)]) -- so that
f (v :: a) :: String -> [(b,String)] -- and,
f (v :: a) (out :: String) :: [(b,String)]
So whatever is the value that parse p inp produces, it must be what f is waiting for to proceed. The types must "fit":
p :: Parser a -- m a
f :: a -> Parser b -- a -> m b
f <$> p :: Parser ( Parser b ) -- m ( m b )
f =<< p :: Parser b -- m b
or, equivalently,
p :: String -> [(a, String)]
-- inp v out
f :: a -> String -> [(b, String)]
-- v out
p >>= f :: String -> [(b, String)] -- a combined Parser
-- inp v2 out2
So this also answers your second question,
How can that be a parser and how can it take out as an argument?
The real question is, what kind of f is it, that does such a thing? Where does it come from? And that's your fourth question.
And the answer is, your example in do-notation,
p :: Parser (Char, Char)
p = do x <- item
_ <- item
y <- item
return (x,y)
by Monad laws is equivalent to the nested chain
p = do { x <- item
; do { _ <- item
; do { y <- item
; return (x,y) }}}
which is a syntactic sugar for the nested chain of Parser bind applications,
p :: Parser (Char, Char) -- ~ String -> [((Char,Char), String)]
p = item >>= (\ x -> -- item :: Parser Char ~ String -> [(Char,String)]
item >>= (\ _ -> -- x :: Char
item >>= (\ y -> -- y :: Char
return (x,y) )))
and it is because the functions are nested that the final return has access to both y and x there; and it is precisely the Parser bind that arranges for the output leftovers string to be used as input to the next parsing step:
p = item >>= f -- :: String -> [((Char,Char), String)]
where
{ f x = item >>= f2
where { f2 _ = item >>= f3
where { f3 y = return (x,y) }}}
i.e. (under the assumption that inp is a string of length two or longer),
parse p inp -- assume that `inp`'s
= (item >>= f) inp -- length is at least 2 NB.
=
let [(v, left)] = item inp -- by the def of >>=
in
(f v) left
=
let [(v, left)] = item inp
in
let x = v -- inline the definition of `f`
in (item >>= f2) left
=
let [(v, left)] = item inp
in let x = v
in let [(v2, left2)] = item left -- by the def of >>=, again
in (f2 v2) left2
=
..........
=
let [(x,left1)] = item inp -- x <- item
[(_,left2)] = item left1 -- _ <- item
[(y,left3)] = item left2 -- y <- item
in
[((x,y), left3)]
=
let (x:left1) = inp -- inline the definition
(_:left2) = left1 -- of `item`
(y:left3) = left2
in
[((x,y), left3)]
=
let (x:_:y:left3) = inp
in
[((x,y), left3)]
after few simplifications.
And this answers your third question.
I am having similar problems reading the syntax, because it's not what we are used to.
(>>=) :: Parser a -> (a -> Parser b) -> Parser b
p >>= f = \inp -> case parse p inp of
[] -> []
[(v,out)] -> parse (f v) out
so for the question:
I want to know how the (f v) out in [(v,out)] -> parse (f v) out returns a parser which is then applied to out.
It does because that's the signature of the 2nd arg (the f): (>>=) :: Parser a -> (a -> Parser b) -> Parser b .... f takes an a and produces a Parser b . a Parser b takes a String which is the out ... (f v) out.
But the output of this should not be mixed up with the output of the function we are writing: >>=
We are outputting a parser ... (>>=) :: Parser a -> (a -> Parser b) ->
Parser b .
The Parser we are outputting has the job of wrapping and chaining the first 2 args
A parser is a function that takes 1 arg. This is constructed right after the first = ... i.e. by returning an (anonymous) function: p >>= f = \inp -> ... so inp refers to the input string of the Parser we are building
so what is left is to define what that constructed function should do ... NOTE: we are not implementing any of the input parsers just chaining them together ... so the output Parser function should:
apply the input parser (p) to the its input (inp): p >>= f = \inp -> case parse p inp of
take the output of that parse [(v, out)] -- v is the result, out is what remains of the input
apply the input function (f is (a -> Parser b)) to the parsed result (v)
(f v) produces a Parser b (a function that takes 1 arg)
so apply that output parser to the remainder of the input after the first parser (out)
For me the understanding lies in the use of destructuring and the realization that we are constructing a function that glues together the execution of other functions together simply considering their interface.
Hope that helps ... it helped me to write it :-)

Parser Error Reporting deriving the right instances

I am trying to build an error reporting parser in haskell. Currently I have been looking at a tutorial and this is what I have so far.
type Position = (Int, Int)
type Err = (String, Position)
newtype Parser1 a = Parser1 {parse1 :: StateT String (StateT Position (MaybeT
(Either Err))) a} deriving (Monad, MonadState String, Applicative, Functor)
runParser :: Parser1 a -> String -> Either Err (Maybe ((a, String), Position))
runParser p ts = runMaybeT $ runStateT (runStateT (parse1 p) ts) (0, 0)
basicItem = Parser1 $ do
state <- get
case state of
(x:xs) -> do {put xs; return x}
[] -> empty
item = Parser1 $ do
c <- basicItem
pos <- lift get
lift (put (f pos))
return c
f :: Char -> Position -> Position
f d (ln, c) = (ln + 1, 0)
f _ (ln, c) = (ln , c + 1)
This piece of code does not compile, I think it is to do with my item parser and the fact that I am trying to access the inner state namely position. I was wondering how in the deriving clause do I make Haskell derive the instances for both states in my parser type, so then I can access the inner state?
Edit 1:
I initially tried declaring basicItem as:
basicItem :: (MonadState String m, Alternative m) => m t
basicItem = do
state <- get
case state of
(x:xs) -> do {put xs; return x}
[] -> empty`
However, I kept getting the error:
I was wondering why it cannot deduce context of get from MonadState String m,
when in my deriving clause I have MonadState String.
The error for my initial question is here:

Resources