Xor parity constraint with more than two variables - z3

I am using the following Python function to model Xor constraints with an arbitrary number of variables for Microsoft's Z3 solver with Python API:
# parity function
# break up long input lists in two smaller lists
def odd(solver, lits):
length = len(lits)
check(length > 0, "Odd needs argument(s)")
if length == 1:
solver.add(lits[0])
elif length == 2:
solver.add(Xor(lits[0], lits[1]))
elif length == 3:
solver.add(Xor(lits[0], Xor(lits[1], lits[2])))
elif length == 4:
# this symmetric form is much faster than the chained forms
solver.add(Xor(Xor(lits[0], lits[1]), Xor(lits[2], lits[3])))
else:
aux = get_aux_variable()
# cf. http://www.gregorybard.com/papers/bard_thesis.pdf
cut_len = 3
odd(solver, lits[:cut_len] + [aux])
odd(solver, [aux] + lits[cut_len:])
auxVariableIdx = 0
def get_aux_variable():
global auxVariableIdx
auxVariableIdx += 1
aux = Bool('t%s' % auxVariableIdx)
return aux
I've noticed that the overall solver performance depends quite a lot on the way, the smaller Xor sub-cases are modelled. Example: I am using "Xor(Xor(a,b), Xor(c,d))" to declare an Xor with four inputs. The alternative "Xor(a,Xor(b,Xor(c,d)))" turned out to be slower by a factor of ten for my examples.
Another example: It makes a big difference if the auxiliary switching variable created to link sub-expressions is added to the inputs lists at the front or at the back of the list.
What is the recommended way to model Xor constraints with many variables in z3py?

Related

How to compare all possible group combinations with EMMEANS in SPSS?

Suppose you have a 2x2 design and you're testing differences between those 4 groups using ANOVA in SPSS.
This is a graph of your data:
After performing ANOVA, there are 6 possible pairwise comparisons between groups that we can perform. These are:
A - C
B - D
A - D
B - C
A - B
C - D
If I want to perform pairwise comparisons, I would usually use this script after the UNIANOVA command:
/EMMEANS=TABLES(Var1*Var2) COMPARE (Var1) ADJ(LSD)
/EMMEANS=TABLES(Var1*Var2) COMPARE (Var2) ADJ(LSD)
However, after running this script, the output only contains 4 of the 6 possible comparisons - there are two pairwise comparisons that are missing, and those are:
A - B
C - D
How can I calculate those comparisons?
EMMEANS in UNIANOVA does not provide all pairwise comparisons among the cells in an interaction like this. There are some other procedures, such as GENLIN, that do offer these, but use large-sample chi-square statistics rather than t or F statistics. In UNIANOVA, you can get these using the LMATRIX subcommand, or you can use some trickery with EMMEANS.
For the trickery with EMMEANS, create a single factor with four levels that index the 2x2 layout of cells, then handle that as a one-way model. The main effect for that is the same as the overall 3 degree of freedom model for the 2x2 layout, and of course EMMEANS with COMPARE works fine on that.
Without creating a new variable, you can use LMATRIX with:
/LMATRIX "(1,1) - (2,2)" var1 1 -1 var2 1 -1 var1*var2 1 0 0 -1
/LMATRIX "(1,2) - (2,1)" var1 1 -1 var1 -1 1 var1*var2 0 1 -1 0
The quoted pieces are labels, indicating the cells in the 2x2 design being compared.
Another trick you can use to make specifying the LMATRIX simpler, but without creating a new variable, is to specify the DESIGN with just the interaction term and suppress the intercept. That makes the parameter estimates just the four cell means:
UNIANOVA Y BY var1 var2
/INTERCEPT=EXCLUDE
/DESIGN var1*var1
/LMATRIX "(1,1) - (2,2)" var1*var2 1 0 0 -1
/LMATRIX "(1,2) - (2,1)" var1*var1 0 1 -1 0.
In this case the one effect shown in the ANOVA table is a 4 df effect testing all means against 0, so it's not of interest, but the comparisons you want are easily obtained. Note that this trick only works with procedures that don't reparameterize to full rank.

How to randomly get a value from a table [duplicate]

I am working on programming a Markov chain in Lua, and one element of this requires me to uniformly generate random numbers. Here is a simplified example to illustrate my question:
example = function(x)
local r = math.random(1,10)
print(r)
return x[r]
end
exampleArray = {"a","b","c","d","e","f","g","h","i","j"}
print(example(exampleArray))
My issue is that when I re-run this program multiple times (mash F5) the exact same random number is generated resulting in the example function selecting the exact same array element. However, if I include many calls to the example function within the single program by repeating the print line at the end many times I get suitable random results.
This is not my intention as a proper Markov pseudo-random text generator should be able to run the same program with the same inputs multiple times and output different pseudo-random text every time. I have tried resetting the seed using math.randomseed(os.time()) and this makes it so the random number distribution is no longer uniform. My goal is to be able to re-run the above program and receive a randomly selected number every time.
You need to run math.randomseed() once before using math.random(), like this:
math.randomseed(os.time())
From your comment that you saw the first number is still the same. This is caused by the implementation of random generator in some platforms.
The solution is to pop some random numbers before using them for real:
math.randomseed(os.time())
math.random(); math.random(); math.random()
Note that the standard C library random() is usually not so uniformly random, a better solution is to use a better random generator if your platform provides one.
Reference: Lua Math Library
Standard C random numbers generator used in Lua isn't guananteed to be good for simulation. The words "Markov chain" suggest that you may need a better one. Here's a generator widely used for Monte-Carlo calculations:
local A1, A2 = 727595, 798405 -- 5^17=D20*A1+A2
local D20, D40 = 1048576, 1099511627776 -- 2^20, 2^40
local X1, X2 = 0, 1
function rand()
local U = X2*A2
local V = (X1*A2 + X2*A1) % D20
V = (V*D20 + U) % D40
X1 = math.floor(V/D20)
X2 = V - X1*D20
return V/D40
end
It generates a number between 0 and 1, so r = math.floor(rand()*10) + 1 would go into your example.
(That's multiplicative random number generator with period 2^38, multiplier 5^17 and modulo 2^40, original Pascal code by http://osmf.sscc.ru/~smp/)
math.randomseed(os.clock()*100000000000)
for i=1,3 do
math.random(10000, 65000)
end
Always results in new random numbers. Changing the seed value will ensure randomness. Don't follow os.time() because it is the epoch time and changes after one second but os.clock() won't have the same value at any close instance.
There's the Luaossl library solution: (https://github.com/wahern/luaossl)
local rand = require "openssl.rand"
local randominteger
if rand.ready() then -- rand has been properly seeded
-- Returns a cryptographically strong uniform random integer in the interval [0, n−1].
randominteger = rand.uniform(99) + 1 -- randomizes an integer from range 1 to 100
end
http://25thandclement.com/~william/projects/luaossl.pdf

Multiset Partition Using Linear Arithmetic and Z3

I have to partition a multiset into two sets who sums are equal. For example, given the multiset:
1 3 5 1 3 -1 2 0
I would output the two sets:
1) 1 3 3
2) 5 -1 2 1 0
both of which sum to 7.
I need to do this using Z3 (smt2 input format) and "Linear Arithmetic Logic", which is defined as:
formula : formula /\ formula | (formula) | atom
atom : sum op sum
op : = | <= | <
sum : term | sum + term
term : identifier | constant | constant identifier
I honestly don't know where to begin with this and any advice at all would be appreciated.
Regards.
Here is an idea:
1- Create a 0-1 integer variable c_i for each element. The idea is c_i is zero if element is in the first set, and 1 if it is in the second set. You can accomplish that by saying that 0 <= c_i and c_i <= 1.
2- The sum of the elements in the first set can be written as 1*(1 - c_1) + 3*(1 - c_2) + ... +
3- The sum of the elements in the second set can be written as 1*c1 + 3*c2 + ...
While SMT-Lib2 is quite expressive, it's not the easiest language to program in. Unless you have a hard requirement that you have to code directly in SMTLib2, I'd recommend looking into other languages that have higher-level bindings to SMT solvers. For instance, both Haskell and Scala have libraries that allow you to script SMT solvers at a much higher level. Here's how to solve your problem using the Haskell, for instance: https://gist.github.com/1701881.
The idea is that these libraries allow you to code at a much higher level, and then perform the necessary translation and querying of the SMT solver for you behind the scenes. (If you really need to get your hands onto the SMTLib encoding of your problem, you can use these libraries as well, as they typically come with the necessary API to dump the SMTLib they generate before querying the solver.)
While these libraries may not offer everything that Z3 gives you access to via SMTLib, they are much easier to use for most practical problems of interest.

Lua base converter

I need a base converter function for Lua. I need to convert from base 10 to base 2,3,4,5,6,7,8,9,10,11...36 how can i to this?
In the string to number direction, the function tonumber() takes an optional second argument that specifies the base to use, which may range from 2 to 36 with the obvious meaning for digits in bases greater than 10.
In the number to string direction, this can be done slightly more efficiently than Nikolaus's answer by something like this:
local floor,insert = math.floor, table.insert
function basen(n,b)
n = floor(n)
if not b or b == 10 then return tostring(n) end
local digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
local t = {}
local sign = ""
if n < 0 then
sign = "-"
n = -n
end
repeat
local d = (n % b) + 1
n = floor(n / b)
insert(t, 1, digits:sub(d,d))
until n == 0
return sign .. table.concat(t,"")
end
This creates fewer garbage strings to collect by using table.concat() instead of repeated calls to the string concatenation operator ... Although it makes little practical difference for strings this small, this idiom should be learned because otherwise building a buffer in a loop with the concatenation operator will actually tend to O(n2) performance while table.concat() has been designed to do substantially better.
There is an unanswered question as to whether it is more efficient to push the digits on a stack in the table t with calls to table.insert(t,1,digit), or to append them to the end with t[#t+1]=digit, followed by a call to string.reverse() to put the digits in the right order. I'll leave the benchmarking to the student. Note that although the code I pasted here does run and appears to get correct answers, there may other opportunities to tune it further.
For example, the common case of base 10 is culled off and handled with the built in tostring() function. But similar culls can be done for bases 8 and 16 which have conversion specifiers for string.format() ("%o" and "%x", respectively).
Also, neither Nikolaus's solution nor mine handle non-integers particularly well. I emphasize that here by forcing the value n to an integer with math.floor() at the beginning.
Correctly converting a general floating point value to any base (even base 10) is fraught with subtleties, which I leave as an exercise to the reader.
you can use a loop to convert an integer into a string containting the required base. for bases below 10 use the following code, if you need a base larger than that you need to add a line that mapps the result of x % base to a character (usign an array for example)
x = 1234
r = ""
base = 8
while x > 0 do
r = "" .. (x % base ) .. r
x = math.floor(x / base)
end
print( r );

Constrained Sequence to Index Mapping

I'm puzzling over how to map a set of sequences to consecutive integers.
All the sequences follow this rule:
A_0 = 1
A_n >= 1
A_n <= max(A_0 .. A_n-1) + 1
I'm looking for a solution that will be able to, given such a sequence, compute a integer for doing a lookup into a table and given an index into the table, generate the sequence.
Example: for length 3, there are 5 the valid sequences. A fast function for doing the following map (preferably in both direction) would be a good solution
1,1,1 0
1,1,2 1
1,2,1 2
1,2,2 3
1,2,3 4
The point of the exercise is to get a packed table with a 1-1 mapping between valid sequences and cells.
The size of the set in bounded only by the number of unique sequences possible.
I don't know now what the length of the sequence will be but it will be a small, <12, constant known in advance.
I'll get to this sooner or later, but though I'd throw it out for the community to have "fun" with in the meantime.
these are different valid sequences
1,1,2,3,2,1,4
1,1,2,3,1,2,4
1,2,3,4,5,6,7
1,1,1,1,2,3,2
these are not
1,2,2,4
2,
1,1,2,3,5
Related to this
There is a natural sequence indexing, but no so easy to calculate.
Let look for A_n for n>0, since A_0 = 1.
Indexing is done in 2 steps.
Part 1:
Group sequences by places where A_n = max(A_0 .. A_n-1) + 1. Call these places steps.
On steps are consecutive numbers (2,3,4,5,...).
On non-step places we can put numbers from 1 to number of steps with index less than k.
Each group can be represent as binary string where 1 is step and 0 non-step. E.g. 001001010 means group with 112aa3b4c, a<=2, b<=3, c<=4. Because, groups are indexed with binary number there is natural indexing of groups. From 0 to 2^length - 1. Lets call value of group binary representation group order.
Part 2:
Index sequences inside a group. Since groups define step positions, only numbers on non-step positions are variable, and they are variable in defined ranges. With that it is easy to index sequence of given group inside that group, with lexicographical order of variable places.
It is easy to calculate number of sequences in one group. It is number of form 1^i_1 * 2^i_2 * 3^i_3 * ....
Combining:
This gives a 2 part key: <Steps, Group> this then needs to be mapped to the integers. To do that we have to find how many sequences are in groups that have order less than some value. For that, lets first find how many sequences are in groups of given length. That can be computed passing through all groups and summing number of sequences or similar with recurrence. Let T(l, n) be number of sequences of length l (A_0 is omitted ) where maximal value of first element can be n+1. Than holds:
T(l,n) = n*T(l-1,n) + T(l-1,n+1)
T(1,n) = n
Because l + n <= sequence length + 1 there are ~sequence_length^2/2 T(l,n) values, which can be easily calculated.
Next is to calculate number of sequences in groups of order less or equal than given value. That can be done with summing of T(l,n) values. E.g. number of sequences in groups with order <= 1001010 binary, is equal to
T(7,1) + # for 1000000
2^2 * T(4,2) + # for 001000
2^2 * 3 * T(2,3) # for 010
Optimizations:
This will give a mapping but the direct implementation for combining the key parts is >O(1) at best. On the other hand, the Steps portion of the key is small and by computing the range of Groups for each Steps value, a lookup table can reduce this to O(1).
I'm not 100% sure about upper formula, but it should be something like it.
With these remarks and recurrence it is possible to make functions sequence -> index and index -> sequence. But not so trivial :-)
I think hash with out sorting should be the thing.
As A0 always start with 0, may be I think we can think of the sequence as an number with base 12 and use its base 10 as the key for look up. ( Still not sure about this).
This is a python function which can do the job for you assuming you got these values stored in a file and you pass the lines to the function
def valid_lines(lines):
for line in lines:
line = line.split(",")
if line[0] == 1 and line[-1] and line[-1] <= max(line)+1:
yield line
lines = (line for line in open('/tmp/numbers.txt'))
for valid_line in valid_lines(lines):
print valid_line
Given the sequence, I would sort it, then use the hash of the sorted sequence as the index of the table.

Resources