Using Z3 with concrete arrays - z3

I want to use Z3 to solve this problem:
Given two arrays, a and b, of equal size with concrete values, select the index that meets these constraints:
0 < selection < [length of array]
forall i, a[selection] <= a[i]
forall i, b[selection] >= b[i]
My z3py program looks like this:
def selectIndex(array1, array2):
n= len(a) #assume both lists are same size
s = Solver()
selection = Int('selection')
i = Int('i')
j = Int('j')
a= Array('a', IntSort(), IntSort())
b= Array('b', IntSort(), RealSort())
for idx in range(n):
Store(a, idx, array1[idx])
Store(b, idx, array2[idx])
constraint1 = And(selection >= 0, selection <= n)
constraint2 = And(i >= 0, i <= n)
constraint3 = And(j >= 0, j <= n)
constraint4 = ForAll([i], a[selection] <= a[i])
constraint5 = ForAll([j], b[selection] >= b[j])
s.add(And(constraint1, constraint2, constraint3, constraint4, constraint5))
s.check()
m = s.model()
return m[selection].as_long()
The model always returns 0, even when given input arrays for which there is only one selection that meets the constraints. I don't think it is using the concrete values in the arrays a and b. How do I fix this?

There are multiple problems with this example, but the crucial one is that the Store(...) expressions do nothing. The result of Store(...) is a new array expression that represents an old array (a, b) with one of the indexes (idx) updated to a new value (array1[idx], array2[idx]). Currently these new arrays are discarded, but we can save them:
for idx in range(n):
a = Store(a, idx, array1[idx])
b = Store(b, idx, array2[idx])
Further, I think that
constraint1 = And(selection >= 0, selection <= n)
should not include the index n, i.e., the <= should be < and the constraints on i and j
constraint2 = And(i >= 0, i <= n)
constraint3 = And(j >= 0, j <= n)
are unnecessary.

Related

A Skolem model in Z3 should be unique, but is printing several (and repeated)

I am testing how similar are "assignment"-like models and "Skolem-function"-like models in Z3.
Thus, I proposed an experiment: I will create a formula for which the unique model is y=2; and try to "imitate" this formula so that the (unique) model is a Skolem function f(x)=2. I did this by using ExistsForall quantification for the y=2 case and ForallExists quantification for the f(x)=2 case.
Thus, I first performed the following (note that the y is existentially quantified from the top-level declaration):
from z3 import *
x,y = Ints('x y')
ct_0 = (x >= 2)
ct_1 = (y > 1)
ct_2 = (y <= x)
phi = ForAll([x], Implies(ct_0, And(ct_1,ct_2)))
s = Solver()
s.add(phi)
print(s.check())
print(s.model())
for i in range(0, 5):
if s.check() == sat:
m = s.model()[y]
print(m)
s.add(And(y != m))
This code successfully prints out y=2 as a unique model (no matter we asked for 5 more). Now, I tried the same for f(x)=2 (note that there is no y):
skolem = Function('skolem', IntSort(), IntSort())
x = Int('x')
ct0 = (x >= 2)
ct1 = (skolem(x) > 1)
ct2 = (skolem(x) <= x)
phi1 = ForAll([x], Implies(ct0, And(ct1,ct2)))
s = Solver()
s.add(phi1)
for i in range(0, 5):
if s.check() == sat:
m = s.model()
print(m)
s.add(skolem(x) != i)
This prints:
[skolem = [else -> 2]]
[x = 0, skolem = [else -> If(2 <= Var(0), 2, 1)]]
[x = 0, skolem = [else -> If(2 <= Var(0), 2, -1)]]
[x = 0, skolem = [else -> If(2 <= Var(0), 2, -1)]]
[x = 0, skolem = [else -> If(2 <= Var(0), 2, -1)]]
My question is: why is the y=2 unique, whereas we get several Skolem functions? In Skolem functions, we get (and repeatedly) some functions in which the antecedent of phi1 (i.e., (x >= 2)) is negated (e.g., x=0); but in models, we do not get stuff like x=0 implies y=1, we only get y=2 because that is the unique model that does not depend on x. In the same way, [skolem = [else -> 2]] should be the unique "Skolem model" that does not depend on x.
There's a fundamental difference between these two queries. In the first one, you're looking for a single y that acts as the value that satisfies the property. And indeed y == 2 is the only choice.
But when you have a skolem function, you have an infinite number of witnesses. The very first one is:
skolem(x) = 2
i.e., the function that maps everything to 2. (You're internally equating this to the model y=2 in the first problem, but that's misleading.)
But there are other functions too. Here's the second one:
skolem(x) = if 2 <= x then 2 else 1
You can convince yourself this is perfectly fine, since it does give you the skolem function that provides a valid value for y (i.e., 2), when the consequent matters. What it returns in the else case is immaterial. (i.e., when x < 2). And similarly, you can simply do different things when x < 2, giving you an infinite number of skolem functions that work. (Of course, the difference is not interesting, but different nonetheless.)
What you really are trying to say, I guess, is there's nothing "else" that's interesting. Unfortunately that's harder to automate, since it's hard to get a Python function back from a z3 model. But you can do it manually:
from z3 import *
skolem = Function('skolem', IntSort(), IntSort())
x = Int('x')
ct0 = (x >= 2)
ct1 = (skolem(x) > 1)
ct2 = (skolem(x) <= x)
phi1 = ForAll([x], Implies(ct0, And(ct1,ct2)))
s = Solver()
s.add(phi1)
print(s.check())
print(s.model())
# The above gives you the model [else -> 2], i.e., the function that maps everything to 2.
# Let's add a constraint that says we want something "different" in the interesting case of "x >= 2":
s.add(ForAll([x], Implies(x >= 2, skolem(x) != 2)))
print(s.check())
This prints:
sat
[skolem = [else -> 2]]
unsat
which attests to the uniqueness of the skolem-function in the "interesting" case.

How to prove Loop Invariants in insertion?

I'm having trouble with writing the proper loop invariants for my insertion sort algorithm listed below. I am trying to prove that all items in the array before the current index is already sorted as insertion sort is supposed to do but Dafny is not recognizing my invariants properly.
method Sort(a : array<int>)
modifies a
ensures forall i,j :: 0 <= i < j < a.Length ==> a[i] <= a[j]
{
var i := 0;
while (i < a.Length)
invariant 0 <= i <= a.Length
invariant forall x,y :: 0 <= x < y < i ==> a[x] <= a[y]
{
var j := i - 1;
while (j >= 0 && a[j] > a[j + 1])
invariant forall k,l :: 0 <= k < l <i ==> a[k] <= a[l]
{
a[j], a[j + 1] := a[j + 1], a[j];
j := j - 1;
}
i := i + 1;
}
}
I've tried asserting that a[j] <= a[j+1] outside the loop but Dafny doesn't seem to think it's true despite it working fine inside of the loop after the swap. When I try using numbers outside the loop such as a[0] <= a[1], it doesn't verify either and I'm not sure why.
Your inner loop invariant doesn't seem right to me.
During iteration, it does not hold. For example
take following snapshot during insertion sort.
i = 3
j = 1
init arr = [5, 4, 3, 2, 1]
arr at start of inner loop = [3, 4, 5, 2, 1]
curr arr = [3, 4, 2, 5, 1]
You need certain book keeping facts so that it can verify.
Let's say that you are inserting element at i, into [0..(i-1)].
Consider extended slice [0..i], this slice is sorted unless
we are comparing with element we are currently inserting. First
invariant captures this. Second invariant which need to
be maintained is, assuming number currently being inserted is
at index j, slice [j..i] is sorted.
method sort(a: array<int>)
modifies a
ensures forall i, j :: 0 <= i < j < a.Length ==> a[i] <= a[j]
{
var i := 0;
while i < a.Length
invariant 0 <= i <= a.Length
invariant forall m, n :: 0 <= m < n < i ==> a[m] <= a[n]
{
var j := i - 1;
while j >= 0 && a[j] > a[j+1]
invariant -1 <= j <= i - 1
invariant forall m, n :: 0 <= m < n <= i && ((m != j + 1) && (n != j + 1)) ==> a[m] <= a[n]
invariant forall m :: j < m <= i ==> a[j+1] <= a[m]
{
a[j], a[j+1] := a[j+1], a[j];
j := j - 1;
}
i := i + 1;
}
}

Why is Z3 giving me unsat for the following formula?

I have the following formula and Python code trying to find the largest n satisfying some property P:
x, u, n, n2 = Ints('x u n n2')
def P(u):
return Implies(And(2 <= x, x <= u), And(x >= 1, x <= 10))
nIsLargest = ForAll(n2, Implies(P(n2), n2 <= n))
exp = ForAll(x, And(P(n), nIsLargest))
s = SolverFor("LIA")
s.reset()
s.add(exp)
print(s.check())
if s.check() == sat:
print(s.model())
My expectation was that it would return n=10, yet Z3 returns unsat. What am I missing?
You're using the optimization API incorrectly; and your question is a bit confusing since your predicate P has a free variable x: Obviously, the value that maximizes it will depend on both x and u.
Here's a simpler example that can get you started, showing how to use the API correctly:
from z3 import *
def P(x):
return And(x >= 1, x <= 10)
n = Int('n')
opt = Optimize()
opt.add(P(n))
maxN = opt.maximize(n)
r = opt.check()
print(r)
if r == sat:
print("maxN =", maxN.value())
This prints:
sat
maxN = 10
Hopefully you can take this example and extend it your use case.

Retrieve a value in Z3Py yields unexpected result

I want to find a maximal interval in which an expression e is true for all x. A way to write such a formula should be: Exists d : ForAll x in (-d,d) . e and ForAll x not in (-d,d) . !e.
To get such a d, the formula f in Z3 (looking at the one above) could be the following:
from z3 import *
x = Real('x')
delta = Real('d')
s = Solver()
e = And(1/10000*x**2 > 0, 1/5000*x**3 + -1/5000*x**2 < 0)
f = ForAll(x,
And(Implies(And(delta > 0,
-delta < x, x < delta,
x != 0),
e),
Implies(And(delta > 0,
Or(x > delta, x < -delta),
x != 0),
Not(e))
)
)
s.add(Not(f))
s.check()
print s.model()
It prints: [d = 2]. This is surely not true (take x = 1). What's wrong?
Also: by specifying delta = RealVal('1'), a counterexample is x = 0, even when x = 0 should be avoided.
Your constants are getting coerced to integers. Instead of writing:
1/5000
You should write:
1.0/5000.0
You can see the generated expression by:
print s.sexpr()
which would have alerted you to the issue.
NB. Being explicit about types is always important when writing constants. See this answer for a variation on this theme that can lead to further problems: https://stackoverflow.com/a/46860633/936310

Incorrect model of max value in Z3Py

I want to find a maximal interval in which an expression e is true for all x. A way to write such a formula should be: Exists d : ForAll x in (-d,d) . e and ForAll x not in (-d,d) . !e.
To get such a d, the formula f in Z3 (looking at the one above) could be the following:
from __future__ import division
from z3 import *
x = Real('x')
delta = Real('d')
s = Solver()
e = And(1/10000*x**2 > 0, 1/5000*x**3 + -1/5000*x**2 < 0)
f = ForAll(x,
And(Implies(And(delta > 0,
-delta < x, x < delta,
x != 0),
e),
Implies(And(delta > 0,
Or(x > delta, x < -delta),
x != 0),
Not(e))
)
)
s.add(Not(f))
s.check()
print s.model()
Which outputs [d = 1/4].
To check it, I set delta = RealVal('1/4'), drop the ForAll quantifier from f and I get x = 1/2. I replace delta with 1/2 and get 3/4, then 7/8 and so on. The bound should be 1. Can I get Z3 to output that immediately?
If you do the math yourself, you can see that the solution is x != 0, x < 1. Or you can simply ask Wolfram Alpha to do it for you. So, there's no such delta.
The issue you're having is that you're asserting:
s.add(Not(f))
This turns the universal quantification on x into an existential; asking z3 to find a delta such that there is some x that fits the bill. (That is, you're negating your whole formula.) Instead, you should do:
s.add(delta > 0, f)
which also makes sure that delta is positive. With that change, z3 will correctly respond:
unsat
(And then you'll get an error for the call to s.model(), you should only call s.model() if the previous call to s.check() returns sat.)

Resources