building an AST with antlr4 for the java language - parsing

I am trying to construct an AST using the latest version of ANTLR (v4), i found a couple of links here in stack-overflow and also on the net, that shows you how to do it for a simple grammars. However, i wanted an AST for the Java.g4 grammar (Java language). Currently , i was following the approached recommended here (https://codevomit.wordpress.com/2015/04/25/antlr4-project-with-maven-tutorial-episode-3/). However based on this approach, i needed to label all the production rules that have alternatives.
Hence, i would greatly appreciate it if someone informed me if there is a different alternative for building an AST using ANTLR4 or if there is an already labeled java.g4 grammar.

All of the subrule alternates do not need to be labeled. Label just those alternates where generation of a discrete context object is desired. Really just the statement, expression, and (maybe) primary rules warrant labeling.
Labeling itself is trivial.

Related

Writing a Parser for mixed Languages

I am trying to write a Parser that can analyze mixed Languages and generate an AST of it. I first tried to build it from scratch on my own in Java and failed, because this is quite a hard topic for a Parser-beginner. Then i googled and found http://www2.cs.tum.edu/projects/cup/examples.php and JFlex.
The question now is: What is the best way to do it?
For example i have a Codefile, that contains several Tags, JS Code, and some $CMS_SET(x,y)$ Code. Is the best way to solve this to define a grammar for all those things in CUP and let CUP generate a Parser based on my grammer that can analyze those mixed Language files and generate and AST Tree of it?
Thanks for all helpful answers. :)
EDIT: I need to do it in Java...
This topic is quite hard even for an expert in this area, which I consider myself to be; check my bio.
The first issue is to build individual parsers for each sublanguage. The first thing you will discover is that defining parsers for specific languages is actually hard; you can read the endless list of SO requests for "can I get a parser for X" or "how do I fix my parser for X". Mostly I think these requests end up not going anywhere; the parsing engines aren't very good, you have to twist the grammars and the parsers to make them work on real languages, there isn't any such thing as "pure HTML", the standards documents disagree and your customer always has some twist in his code that you're not prepared for. Finally there's the glitches related to character set encodings, variations in newline endings, and preprocessors to complicate the parsing parsing problem. The C++ preprocessor is a lot more complex than you might think, and you have to have this right. The easiest way to defeat this problem is to find some parser generator with the languages already predefined. ANTLR has a bunch for the now deprecated ANTLR3; there's no assurance these parsers are robust let alone compatible for your purposes.
CUP isn't a particularly helpful parser generator; none of the LL(x) or LALR(x) parser generators are really helpful, because no real langauge matches the categories of things they can parse. The consequence: an endless stream of requests (on SO!) for help "resolving my shift-reduce conflict", or "eliminating right recursion". The only parser generator IMHO that has stood the test of time is a GLR parser generator (I hear good things about GLL but that's pretty recent). We've done 40+ languages with one GLR parser generator, including production IBM COBOL, full C++14 and Java8.
You second problem will be building ASTs. You can hand code the AST building process, but that gets old fast when you have to change the grammars often and/or you have many grammars as you are effectively contemplating. This you can beat your way throught with sweat. (We chose to push the problem of building ASTs into the parser so we didn't have to put any energy this in building a grammar; to do this, your parser engine has to offer you this help and none of the mainstream ones do.).
Now you need to compose parsers. You need to have one invoke the other as the need comes up; of course your chosen parser isn't designed to do this so you'll have to twist it. The first hard part is provide a parser with clues that a sublanguage is coming up in the input stream, and for it to hand off that parsing to the sublangauge parser, and get it to pass a tree back to be incorporated in the parent parser's tree, presumably with some kind of marker so you can tell where the transitions between different sublangauges are in the tree. You can often do this by hacking one language's lexer, when it sees the clue, to invoke the other; but then what you do with the tree it returns? There's no way to give that tree to the current parser and say "integrate this". You get around this by modifying the parsing machinery in arcane ways.
But all of the above isn't where the problem is.
Parsing is inconvenient, but only a small part of what you need to analyze your programs in any interesting way; you need symbol tables, control and data flow analysis, maybe points-to analyses, and the engineering on these will swamp the work listed above. See my essay on "Life After Parsing" (google or via my bio) for a long discussion of what else you need.
In short, I think you are biting off an enormous task in just "parsing", and you haven't even told us what you intend to do with the result. You are welcome to start down this path, but very few people have succeeded; my team spent over a 50 man years of PhD level engineering to get where we are, and we are hardly done.
Java won't make the solution any easier or harder; the langauge in which you solve all of the above is irrelevant.

Writing a code formatting tool for a programming language

I'm looking into the feasibility of writing a code formatting tool for the Apex language, a Salesforce.com variation on Java, and perhams VisualForce, its tag based markup language.
I have no idea on where to start this, apart from feeling/knowing that writing a language parser from scratch is probably not the best approach.
I have a fairly thin grasp of what Antlr is and what it does, but conceptually, I'm imagining one could 'train' antlr to understand the syntax of Apex. I could then get a structured version of the code in a data structure (AST?) which I could then walk to produce correctly formatted code.
Is this the right concept? Is Antlr a tool to do that? Any links to a brief synopsis on this? I'm looking for investing a few days in this task, not months, and I'm not sure if its even vaguely achievable.
Since Apex syntax is similar to Java, I'd look at Eclipse's JDT. Edit down the Java grammar to match Apex. Do the same w/ formatting rules/options. This is more than a few days of work.
Steven Herod wrote:
... I'm imagining one could 'train' antlr to understand the syntax of Apex. ...
What do you mean by "'train' antlr"? "Train" as in artificial intelligence (training a neural-net)? If so, then you are mistaken.
Steven Herod wrote:
... get a structured version of the code in a data structure (AST?) which I could then walk to produce correctly formatted code.
Is this the right concept? Is Antlr a tool to do that?
Yes, more or less. You write a grammar that precisely defines the language you want to parse. Then you use ANTLR which will generate a lexer (tokenizer) and parser based on the grammar file. You can let the parser create an AST from your input source and then walk the AST and emit (custom) output/code.
Steven Herod wrote:
... I'm looking for investing a few days in this task, not months, and I'm not sure if its even vaguely achievable.
Well, I don't know you of course, but I'd say writing a grammar for a language similar to Java, and then emitting output by walking the AST within just a couple of days is impossible, even more so for someone new to ANTLR. I am fairly familiar with ANTLR, but I couldn't do it in just a few days. Note that I'm only talking about the "parsing-part", after you've done that, you'll need to integrate this in some text editor. This all looks to be more a project of several months, not even weeks, let alone several days.
So, in short, if all you want to do is write a custom code highlighter, ANTLR isn't your best choice.
You could have a look at Xtext which uses ANTLR under the hood. To quote their website:
With Xtext you can easily create your own programming languages and domain-specific languages (DSLs). The framework supports the development of language infrastructures including compilers and interpreters as well as full blown Eclipse-based IDE integration. ...
But I doubt you'll have an Eclipse plugin up and running within just a few days.
Anyway, best of luck!
Our DMS Software Reengineering Toolkit is designed to do this as kind poker-pot ante necessary to do any kind of automated software reengineering project.
DMS allows one to define a grammar, similar to ANTLR's (and other parser generator) styles. Unlike ANTLR (and other parser generators), DMS uses a GLR parser, which means you don't have to bend the language grammar rules to meet the requirements of the parser generator. If you can write an context-free grammar, DMS will convert that into a parser for that language. This means in fact you can get a working, correct grammar up considerably faster than with typical LL or L(AL)R parser generators.
Unlike ANTLR (and other parser generators), there is no additional work to build the AST; it is automatically constructed. This means you spend zero time write tree-building rules and none debugging them.
DMS additionally provides a pretty-printing specification language, specifying text boxes stack vertically, horizontally, or indented, in which you can define the "format" that is used to convert the AST back into completely legal, nicely formatted source text. None of the well known parser generators provide any help here; if you want to prettyprint the tree, you get to do a great deal of custom coding. For more details on this, see my SO answer to Compiling an AST back to source. What this means is you can build a prettyprinter for your grammar in an (intense) afternoon by simply annotating the grammar rules with box layout directives.
DMS's lexer is very careful to capture comments and "lexical formats" (was that number octal? What kind of quotes did that string have? Escaped characters?) so that they can be regenerated correctly. Parse-to-AST and then prettyprint-AST-to-text round trips arbitrarily ugly code into formatted code following the prettyprinting rules. (This round trip is the poker ante: if you want go further, to actually manipulate the AST, you still want to be able to regenerate valid source text).
We recently built parser/prettyprinters for EGL. This took about a week end to end. Granted, we are expert at our tools.
You can download any of a number of different formatters built using DMS from our web site, to see what such formatting can do.
EDIT July 2012: Last week (5 days) using DMS, from scratch we (I personally) built a fully compliant IEC61131-3 "Structured Text" (industrial control language, Pascal-like) parser and prettyprinter. (It handles all the examples from the standards documents).
Reverse engineering a language to get a parser is hard. Very hard! Even if it's very close to Java.
But why reinvent the wheel?
There is a wonderful Apex parser implementation as part of the Force.com IDE on GitHub. It's just a jar without source code but you can use it for whatever you want. And the developers behind it are really supportive and helpful.
We are currently building an Apex module of the famous Java static code analyzer PMD here. And we use Salesforce.com internal parser. It works like a charm.
And hey, it's an open source project and we need contributers of any kind ;-)

What is the easiest way of telling whether a BNF grammar is ambiguous or not?

Namely, is there a tool out there that will automatically show the full language for a given grammar, including highlighting ambiguities (if any)?
There might be some peculiarity about BNF-style grammars, but in general, deciding whether a given context-free grammar (such as BNF) is ambiguous is not possible.
In short, there does not exist a tool because in general, that tool is mathematically impossible. There might be some special cases that could work for you, though.
In general, no.
But as a practical approach, what you can do, is given a grammar, is for each rule, to enumerate possible strings of valid terminals/nonterminals, to see if any rule has two or more equivalent derivations (which would be an ambiguity).
Our DMS Software Reengineering Toolkit is a program transformation system for arbitrary computer langauges, driven by explicit grammar descriptions. DMS uses a parser generator to drive its GLR parsing engine.
DMS's parser generator will optionally the ambiguity check sketched above, by running an iterative deepening search across all grammar rules. This is practical because it has the parse tables to efficiently guide the enumeration of choices. You can tell it to run this check up to some chosen depth. It can take a long time if you choose a depth of any interesting size, but in fact a depth of 3 or 4 is sufficient to find many stupid ambiguities introduced in a large grammar. We generally do this during our initial grammar debugging, and at the point where we think we have it pretty much right.

Most effective way to parse C-like definition strings?

I've got a set of function definitions written in a C-like language with some additional keywords that can be put before some arguments(the same way as "unsigned" or "register", for example) and I need to analyze these lines as well as some function stubs and generate actual C code from them.
Is that correct that Flex/Yacc are the most proper way to do it?
Will it be slower than writing a Shell or Python script using regexps(which may become big pain, as I suppose, if the number of additional keywords becomes bigger and their effects would be rather different) provided that I have zero experience with analysers/parsers(though I know how LALR does its job)?
Are there any good materials on Lex/Yacc that cover similar problems? All papers I could find use the same primitive example of a "toy" calculator.
Any help will be appreciated.
ANTLR is commonly used (as are Lex\Yacc).
ANTLR, ANother Tool for Language
Recognition, is a language tool that
provides a framework for constructing
recognizers, interpreters, compilers,
and translators from grammatical
descriptions containing actions in a
variety of target languages.
There is also the Lemon Parser, which features a less restrictive grammar. The down side is you're married to lemon, re-writing a parser's grammar to something else when you discover some limitation sucks. The up side is its really easy to use .. and self contained. You can drop it in tree and not worry about checking for the presence of others.
SQLite3 uses it, as do several other popular projects. I'm not saying use it because SQLite does, but perhaps give it a try if time permits.
That entirely depends on your definition of "effective". If you have all the time of the world, the fastest parser would be a hand-written pull parser. They take a long time to debug and develop but today, no parser generator beats hand-written code in terms of runtime performance.
If you want something that can parse valid C within a week or so, use a parser generator. The code will be fast enough and most parser generators come with a grammar for C already which you can use as a starting point (avoiding 90% of the common mistakes).
Note that regexps are not suitable for parsing recursive structures. This approach would both be slower than using a generator and more error prone than a hand-written pull parser.
actually, it depends how complex is your language and whether it's really close to C or not...
Still, you could use lex as a first step even for regular expression ....
I would go for lex + menhir and o'caml....
but any flex/yacc combination would be fine..
The main problem with regular bison (the gnu implementation of yacc) stems from the C typing.. you have to describe your whole tree (and all the manipulation functions)... Using o'caml would be really easier ...
For what you want to do, our DMS Software Reengineering Toolkit is likely a very effective solution.
DMS is designed specifically to support customer analyzers/code generators of the type you are discussing. It provides very strong facilities for defining arbitrary language parsers/analyzers (tested on 30+ real languages including several complete dialects of C, C++, Java, C#, and COBOL).
DMS automates the construction of ASTs (so you don't have to do anything but get the grammar right to have a usable AST), enables the construction of custom analyses of exactly the pattern-directed inspection you indicated, can construct new C-specific ASTs representing the code you want to generate, and spit them out as compilable C source text. The pre-existing definitions of C for DMS can likely be bent to cover your C-like language.

Standard format for concrete and abstract syntax trees

I have an idea for a hobby project which performs some code analysis and manipulation. This project will require both the concrete and abstract syntax trees of a given source file. Additionally, bi-directional references between the two trees would be helpful. I would like to avoid the work of transcribing a grammar to construct my own lexer and parser.
Is there a standard format for describing either concrete or abstract syntax trees?
Do any widely-used tool chains support outputting to these formats?
I don't have a particular target programming language in mind. Any popular one will do for a prototype, but I'd prefer one I know well: Python, C#, Javascript, or C/C++.
I'd like the ability to run a source file through a tool or library and get back both trees. In an ideal world, it would be practical to run this tool on code as it is being edited by a user and be tolerant of errors. Again, I am simply trying to develop a prototype, so these requirements are pretty lax.
Thanks!
The research community decided that graph exchange was the right thing to do when moving information from one program analysis tool to another.
See http://www.gupro.de/GXL
More recently, the OMG has defined a standard for interchanging Abstract Syntax Trees.
See http://www.omg.org/spec/ASTM/1.0/Beta1/
This problem seems to get solved over and over again.
There's half a dozen "tool bus" proposals made over the years
that all solved it, with no one ever overtaking the industry.
The problem is that a) it is easy to represent ASTs using
any kind of nestable notation [parentheses like LISP,
like XML, ...] so people roll their own solution easily,
and b) for one tool to exchange an AST with another, they
both have to agree essentially on what the AST nodes mean;
but most ASTs are rather accidentally derived from the particular
grammar/parsing technology used by each tool, and there's
almost always disagreement about that between tools.
So, I've seen very few tools that exchange ASTs meaningfully.
If you're doing a hobby thing, I'd stick with a lisp-like
encoding of trees, where each node has the following format:
( ... )
Its easy to generate, and easy to read.
I work on a professional tool to manipulate programs. If we
have print out the AST, we do the above. Mostly individual
ASTs are far too complicated to look at in practice,
so we hardly ever print out the entire AST, at best only
a node and a few children deep. Our tool doesn't exchange
ASTs with anybody (see above reasons :) but does just
fine building it in memory, doing whizzy things with it
for analysis reasons or transformation reasons, and then
either just deleteing it (no need to send it anywhere)
or regenerating the original language text from the tree.
[The latter means you need anti-parsing or "prettyprinting"
technology]
In our project we defined the AST metamodel in UML and use ANTLR (Java) to populate the model. We also maintain the token information from ANTLR after parsing, but we have not yet tried to update the underlying text-file with modifications made on the model.
This has a hideous overhead (in infrastructure, such as Eclipse UML2/EMF), but our goal is to use high-level tools for Model-based/driven Development (MDD, MDA) anyway, so we decided to use it on each level.
I think one of our students once played with OpenArchitectureWare and managed to get changes from the Eclipse-based, generated editor back into the syntax tree (not related to the UML model above) automatically, but I don't know the details about this.
You might also want to look at ANTLR's tree grammars.
Specific standards are an expectation, while more general purpose standards may also be appropriate. Ira Baxter already mentioned GXL, and RDF may be added too, just that it would require an appropriate ontology and is more oriented toward semantic than syntax. Still may be an option to investigate.
For specific standards, Ira Baxter already mentioned ASTM, another one, although it rather targets a specific kind of programming language (logic languages), is a standard for semantic/conceptual graph, known as ISO‑IEC 24707 2007.
Not a standard on its own, but a paper about that matter: Towards Portable Source Code Representations Using XML
.
I don't know any effectively used standard (in this area, that's always house‑made cooking everywhere), I'm just interested too in this topic.

Resources