How to run a shell script using dockerfiles CMD - docker

I am using dockerfiles to build a simple container. Here is the Dockerfile:
FROM XXXXXXX:5003/base-java
MAINTAINER XXXXX
ADD pubsub/ /opt/pubsub/
CMD ["/opt/pubsub/run.sh"]
Content of run.sh is as follows:
#!/bin/bash
nohup java -jar /opt/pubsub/publish.jar &
nohup java -jar /opt/pubsub/subscribe.jar &
This is simple java application for pub/sub.
Now I have got another container running rabbitmq and I am linking the 2 containers however each of my attempt has just failed and My pub/sub container does not start. Can someone advice how to go about debuggin this issue? Somehow docker logs does not have anything.
Here is how I am linking the containers: sudo docker run -d -P --name pub_sub --link rabbitmq:rabbitmq1 image_pub_sub
And here is how I am using the alias name in my pub/sub code
factory = new ConnectionFactory();
factory.setHost("rabbitmq1");
try { connection = factory.newConnection();
channel = connection.createChannel();
channel.queueDeclare("pub", true, false, false, null);
}
catch (IOException e) { // TODO Auto-generated catch block
e.printStackTrace(); }
I was expecting that my publish code will create a queue in the rabbitmq container and start pushing messages. My subscriber code will basically connect to the same rabbitmq and start reading the messages.
When I run the command nothing happens it just prints a long id of the new container and exits..When I run sudo docker ps -a, I can see the following:
e8a50d5aefa5 image_pub_sub:latest "/opt/pubsub/run.sh" 32 minutes ago Exited (0) 32 minutes ago pub_sub
So this means my container is not running.
Just now I tested by updating the /etc/hosts by launching a new container using the following command: sudo docker run -i -t image_pub_sub /bin/bash. Modified the /etc/hosts of this new container and added the following entry <IP_ADDRESS> rabbitmq1 and ran my script /opt/pubsub/run.sh and it appends the nohup file with the following messages:
Message Sent
[x] Received 'Hello'
Message Sent
Message Sent
[x] Received 'Hello'

A Docker container will stop when its main process completes. In your case, this means the two Java applications will be forked to the background (because of the nohup call) then the script will immediately complete and the container will exit.
There are a few solutions:
The quickest and easiest solution is to just remove nohup call from the second java call. That way the script won't exit until the second Java application exits.
Use a process manager such as runit or supervisord to manage the processes.
Put the jars in separate containers and call Java directly (this would seem to be the best solution to me).

can use tail -f /dev/null or tail your log

Related

Can a process in Docker container run a command in the host? [duplicate]

How to control host from docker container?
For example, how to execute copied to host bash script?
This answer is just a more detailed version of Bradford Medeiros's solution, which for me as well turned out to be the best answer, so credit goes to him.
In his answer, he explains WHAT to do (named pipes) but not exactly HOW to do it.
I have to admit I didn't know what named pipes were when I read his solution. So I struggled to implement it (while it's actually very simple), but I did succeed.
So the point of my answer is just detailing the commands you need to run in order to get it working, but again, credit goes to him.
PART 1 - Testing the named pipe concept without docker
On the main host, chose the folder where you want to put your named pipe file, for instance /path/to/pipe/ and a pipe name, for instance mypipe, and then run:
mkfifo /path/to/pipe/mypipe
The pipe is created.
Type
ls -l /path/to/pipe/mypipe
And check the access rights start with "p", such as
prw-r--r-- 1 root root 0 mypipe
Now run:
tail -f /path/to/pipe/mypipe
The terminal is now waiting for data to be sent into this pipe
Now open another terminal window.
And then run:
echo "hello world" > /path/to/pipe/mypipe
Check the first terminal (the one with tail -f), it should display "hello world"
PART 2 - Run commands through the pipe
On the host container, instead of running tail -f which just outputs whatever is sent as input, run this command that will execute it as commands:
eval "$(cat /path/to/pipe/mypipe)"
Then, from the other terminal, try running:
echo "ls -l" > /path/to/pipe/mypipe
Go back to the first terminal and you should see the result of the ls -l command.
PART 3 - Make it listen forever
You may have noticed that in the previous part, right after ls -l output is displayed, it stops listening for commands.
Instead of eval "$(cat /path/to/pipe/mypipe)", run:
while true; do eval "$(cat /path/to/pipe/mypipe)"; done
(you can nohup that)
Now you can send unlimited number of commands one after the other, they will all be executed, not just the first one.
PART 4 - Make it work even when reboot happens
The only caveat is if the host has to reboot, the "while" loop will stop working.
To handle reboot, here what I've done:
Put the while true; do eval "$(cat /path/to/pipe/mypipe)"; done in a file called execpipe.sh with #!/bin/bash header
Don't forget to chmod +x it
Add it to crontab by running
crontab -e
And then adding
#reboot /path/to/execpipe.sh
At this point, test it: reboot your server, and when it's back up, echo some commands into the pipe and check if they are executed.
Of course, you aren't able to see the output of commands, so ls -l won't help, but touch somefile will help.
Another option is to modify the script to put the output in a file, such as:
while true; do eval "$(cat /path/to/pipe/mypipe)" &> /somepath/output.txt; done
Now you can run ls -l and the output (both stdout and stderr using &> in bash) should be in output.txt.
PART 5 - Make it work with docker
If you are using both docker compose and dockerfile like I do, here is what I've done:
Let's assume you want to mount the mypipe's parent folder as /hostpipe in your container
Add this:
VOLUME /hostpipe
in your dockerfile in order to create a mount point
Then add this:
volumes:
- /path/to/pipe:/hostpipe
in your docker compose file in order to mount /path/to/pipe as /hostpipe
Restart your docker containers.
PART 6 - Testing
Exec into your docker container:
docker exec -it <container> bash
Go into the mount folder and check you can see the pipe:
cd /hostpipe && ls -l
Now try running a command from within the container:
echo "touch this_file_was_created_on_main_host_from_a_container.txt" > /hostpipe/mypipe
And it should work!
WARNING: If you have an OSX (Mac OS) host and a Linux container, it won't work (explanation here https://stackoverflow.com/a/43474708/10018801 and issue here https://github.com/docker/for-mac/issues/483 ) because the pipe implementation is not the same, so what you write into the pipe from Linux can be read only by a Linux and what you write into the pipe from Mac OS can be read only by a Mac OS (this sentence might not be very accurate, but just be aware that a cross-platform issue exists).
For instance, when I run my docker setup in DEV from my Mac OS computer, the named pipe as explained above does not work. But in staging and production, I have Linux host and Linux containers, and it works perfectly.
PART 7 - Example from Node.JS container
Here is how I send a command from my Node.JS container to the main host and retrieve the output:
const pipePath = "/hostpipe/mypipe"
const outputPath = "/hostpipe/output.txt"
const commandToRun = "pwd && ls-l"
console.log("delete previous output")
if (fs.existsSync(outputPath)) fs.unlinkSync(outputPath)
console.log("writing to pipe...")
const wstream = fs.createWriteStream(pipePath)
wstream.write(commandToRun)
wstream.close()
console.log("waiting for output.txt...") //there are better ways to do that than setInterval
let timeout = 10000 //stop waiting after 10 seconds (something might be wrong)
const timeoutStart = Date.now()
const myLoop = setInterval(function () {
if (Date.now() - timeoutStart > timeout) {
clearInterval(myLoop);
console.log("timed out")
} else {
//if output.txt exists, read it
if (fs.existsSync(outputPath)) {
clearInterval(myLoop);
const data = fs.readFileSync(outputPath).toString()
if (fs.existsSync(outputPath)) fs.unlinkSync(outputPath) //delete the output file
console.log(data) //log the output of the command
}
}
}, 300);
Use a named pipe.
On the host OS, create a script to loop and read commands, and then you call eval on that.
Have the docker container read to that named pipe.
To be able to access the pipe, you need to mount it via a volume.
This is similar to the SSH mechanism (or a similar socket-based method), but restricts you properly to the host device, which is probably better. Plus you don't have to be passing around authentication information.
My only warning is to be cautious about why you are doing this. It's totally something to do if you want to create a method to self-upgrade with user input or whatever, but you probably don't want to call a command to get some config data, as the proper way would be to pass that in as args/volume into docker. Also, be cautious about the fact that you are evaling, so just give the permission model a thought.
Some of the other answers such as running a script. Under a volume won't work generically since they won't have access to the full system resources, but it might be more appropriate depending on your usage.
The solution I use is to connect to the host over SSH and execute the command like this:
ssh -l ${USERNAME} ${HOSTNAME} "${SCRIPT}"
UPDATE
As this answer keeps getting up votes, I would like to remind (and highly recommend), that the account which is being used to invoke the script should be an account with no permissions at all, but only executing that script as sudo (that can be done from sudoers file).
UPDATE: Named Pipes
The solution I suggested above was only the one I used while I was relatively new to Docker. Now in 2021 take a look on the answers that talk about Named Pipes. This seems to be a better solution.
However, nobody there mentioned anything about security. The script that will evaluate the commands sent through the pipe (the script that calls eval) must actually not use eval for the whole pipe output, but to handle specific cases and call the required commands according to the text sent, otherwise any command that can do anything can be sent through the pipe.
That REALLY depends on what you need that bash script to do!
For example, if the bash script just echoes some output, you could just do
docker run --rm -v $(pwd)/mybashscript.sh:/mybashscript.sh ubuntu bash /mybashscript.sh
Another possibility is that you want the bash script to install some software- say the script to install docker-compose. you could do something like
docker run --rm -v /usr/bin:/usr/bin --privileged -v $(pwd)/mybashscript.sh:/mybashscript.sh ubuntu bash /mybashscript.sh
But at this point you're really getting into having to know intimately what the script is doing to allow the specific permissions it needs on your host from inside the container.
My laziness led me to find the easiest solution that wasn't published as an answer here.
It is based on the great article by luc juggery.
All you need to do in order to gain a full shell to your linux host from within your docker container is:
docker run --privileged --pid=host -it alpine:3.8 \
nsenter -t 1 -m -u -n -i sh
Explanation:
--privileged : grants additional permissions to the container, it allows the container to gain access to the devices of the host (/dev)
--pid=host : allows the containers to use the processes tree of the Docker host (the VM in which the Docker daemon is running)
nsenter utility: allows to run a process in existing namespaces (the building blocks that provide isolation to containers)
nsenter (-t 1 -m -u -n -i sh) allows to run the process sh in the same isolation context as the process with PID 1.
The whole command will then provide an interactive sh shell in the VM
This setup has major security implications and should be used with cautions (if any).
Write a simple server python server listening on a port (say 8080), bind the port -p 8080:8080 with the container, make a HTTP request to localhost:8080 to ask the python server running shell scripts with popen, run a curl or writing code to make a HTTP request curl -d '{"foo":"bar"}' localhost:8080
#!/usr/bin/python
from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer
import subprocess
import json
PORT_NUMBER = 8080
# This class will handles any incoming request from
# the browser
class myHandler(BaseHTTPRequestHandler):
def do_POST(self):
content_len = int(self.headers.getheader('content-length'))
post_body = self.rfile.read(content_len)
self.send_response(200)
self.end_headers()
data = json.loads(post_body)
# Use the post data
cmd = "your shell cmd"
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
p_status = p.wait()
(output, err) = p.communicate()
print "Command output : ", output
print "Command exit status/return code : ", p_status
self.wfile.write(cmd + "\n")
return
try:
# Create a web server and define the handler to manage the
# incoming request
server = HTTPServer(('', PORT_NUMBER), myHandler)
print 'Started httpserver on port ' , PORT_NUMBER
# Wait forever for incoming http requests
server.serve_forever()
except KeyboardInterrupt:
print '^C received, shutting down the web server'
server.socket.close()
If you are not worried about security and you're simply looking to start a docker container on the host from within another docker container like the OP, you can share the docker server running on the host with the docker container by sharing it's listen socket.
Please see https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface and see if your personal risk tolerance allows this for this particular application.
You can do this by adding the following volume args to your start command
docker run -v /var/run/docker.sock:/var/run/docker.sock ...
or by sharing /var/run/docker.sock within your docker compose file like this:
version: '3'
services:
ci:
command: ...
image: ...
volumes:
- /var/run/docker.sock:/var/run/docker.sock
When you run the docker start command within your docker container,
the docker server running on your host will see the request and provision the sibling container.
credit: http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
As Marcus reminds, docker is basically process isolation. Starting with docker 1.8, you can copy files both ways between the host and the container, see the doc of docker cp
https://docs.docker.com/reference/commandline/cp/
Once a file is copied, you can run it locally
docker run --detach-keys="ctrl-p" -it -v /:/mnt/rootdir --name testing busybox
# chroot /mnt/rootdir
#
I have a simple approach.
Step 1: Mount /var/run/docker.sock:/var/run/docker.sock (So you will be able to execute docker commands inside your container)
Step 2: Execute this below inside your container. The key part here is (--network host as this will execute from host context)
docker run -i --rm --network host -v /opt/test.sh:/test.sh alpine:3.7
sh /test.sh
test.sh should contain the some commands (ifconfig, netstat etc...) whatever you need.
Now you will be able to get host context output.
You can use the pipe concept, but use a file on the host and fswatch to accomplish the goal to execute a script on the host machine from a docker container. Like so (Use at your own risk):
#! /bin/bash
touch .command_pipe
chmod +x .command_pipe
# Use fswatch to execute a command on the host machine and log result
fswatch -o --event Updated .command_pipe | \
xargs -n1 -I "{}" .command_pipe >> .command_pipe_log &
docker run -it --rm \
--name alpine \
-w /home/test \
-v $PWD/.command_pipe:/dev/command_pipe \
alpine:3.7 sh
rm -rf .command_pipe
kill %1
In this example, inside the container send commands to /dev/command_pipe, like so:
/home/test # echo 'docker network create test2.network.com' > /dev/command_pipe
On the host, you can check if the network was created:
$ docker network ls | grep test2
8e029ec83afe test2.network.com bridge local
In my scenario I just ssh login the host (via host ip) within a container and then I can do anything I want to the host machine
I found answers using named pipes awesome. But I was wondering if there is a way to get the output of the executed command.
The solution is to create two named pipes:
mkfifo /path/to/pipe/exec_in
mkfifo /path/to/pipe/exec_out
Then, the solution using a loop, as suggested by #Vincent, would become:
# on the host
while true; do eval "$(cat exec_in)" > exec_out; done
And then on the docker container, we can execute the command and get the output using:
# on the container
echo "ls -l" > /path/to/pipe/exec_in
cat /path/to/pipe/exec_out
If anyone interested, my need was to use a failover IP on the host from the container, I created this simple ruby method:
def fifo_exec(cmd)
exec_in = '/path/to/pipe/exec_in'
exec_out = '/path/to/pipe/exec_out'
%x[ echo #{cmd} > #{exec_in} ]
%x[ cat #{exec_out} ]
end
# example
fifo_exec "curl https://ip4.seeip.org"
Depending on the situation, this could be a helpful resource.
This uses a job queue (Celery) that can be run on the host, commands/data could be passed to this through Redis (or rabbitmq). In the example below, this is occurring in a django application (which is commonly dockerized).
https://www.codingforentrepreneurs.com/blog/celery-redis-django/
To expand on user2915097's response:
The idea of isolation is to be able to restrict what an application/process/container (whatever your angle at this is) can do to the host system very clearly. Hence, being able to copy and execute a file would really break the whole concept.
Yes. But it's sometimes necessary.
No. That's not the case, or Docker is not the right thing to use. What you should do is declare a clear interface for what you want to do (e.g. updating a host config), and write a minimal client/server to do exactly that and nothing more. Generally, however, this doesn't seem to be very desirable. In many cases, you should simply rethink your approach and eradicate that need. Docker came into an existence when basically everything was a service that was reachable using some protocol. I can't think of any proper usecase of a Docker container getting the rights to execute arbitrary stuff on the host.

Docker exits CMD on start

I have a docker image that runs play web application. In dockerfile there is CMD which starts the server and it waits until you hit Ctrl+D to exit. If I do:
docker run -d -i -v
It works correctly - starts the server and waits for ctrl+D.
This is however not the case when i start the container:
docker start -i
Instead the server automatically stops:
--- (Running the application, auto-reloading is enabled) ---
[info] p.c.s.NettyServer - Listening for HTTP on /0:0:0:0:0:0:0:0:9000
(Server started, use Ctrl+D to stop and go back to the console...)
[success] Total time: 1 s, completed Jul 27, 2016 11:54:13 AM <--- this indicates that the server was stopped.
How can I force docker start to not stop server?
A docker container exits when its main process finishes. Without having an insight into your docker-file (I have no experience with the play framework), you need to make sure that at least one process stays alive.
You have a couple of options:
Docker Way
Try using -it like docker run -it <your framework image> bash to get into the container you are starting. This should keep your window open and allow you to run commands in the container.
Docker "debug" way
Try using the docker inspect <your container> (use docker ps -a to find your container) command to investigate why the container exited. In case you have a start script like start.sh you can try to add while true; do sleep 1000; done to keep the container up to investigate on what it was doing before it exited.
Try using the one of the published docker images like - https://hub.docker.com/r/ingensi/play-framework/
P.S. I can not loose the feeling that you are new to docker and are mixing the docker start and the docker run command.

How to keep a service running on a Docker container

I am trying to run a simple docker container with my web application installed (Not using docker file).
During the testing I would always run a container using -t -i option and then start the tomcat service inside it by running a shell script.
How when I am moving to production I dont want to use the -t -i option any more and just need my Tomcat service to start and be the only primary service.
I trying pointing the entrypoint to the start up script for starting tomcat but the container terminates after that script finishes.
How do I run a container, start a service and keep that service as the single primary service of the container?
Note: I read some posts about supervisor but not sure if I would need to start building my image from scratch if I go that route? I would prefer not doing that.
Any suggestions?
If you have a Dockerfile that uses an entrypoint pattern, it will look something like this:
(Dockerfile)
FROM ubuntu
...Some configuration steps...
add start.sh /start.sh
ENTRYPOINT ["/start.sh"]
All you need to do is make sure your start.sh script 'hangs' in some way. Some people like to tail the syslogs, but tailing any file that exists will work.
(start.sh)
#!/bin/bash
service Your_Service_Or_Whatever start
tail -f /var/log/dmesg
A shorter version:
FROM ubuntu
...Some configuration steps...
ENTRYPOINT ["/bin/sh", "-c", "while true; do sleep 1; done"]
tested with Docker version 1.12.1, build 23cf638
Use docker --version to find out your version
Docker containers as default will run according to the configuration in the images Dockerfile. If you usually run a container with the -i flag, you leave STDIN open allowing you access to the containers entrypoint or it could be a bash shell. To achieve what you want, you can run the container in a detached state passing your commands into docker run directly.
docker run -d myapp /opt/catalina/bin/startup.sh
This will run the myapp container in a detached state and will run the command passed as the 3rd argument. If the command results in a long lived service, the container will stay active as long as the service is.
This is explained in detail in the docs.

Run a script when docker is stopped

I am trying to create docker container using dockerfile where script-entry.sh is to be executed when the containers starts and script-exit.sh to be executed when the container stops.
ENTRYPOINT helped to accomplish the first part of the problem where script-entry.sh runs on startup.
How will i make sure the script-exit.sh is executed on docker exit/stop ?
docker stop sends a SIGTERM signal to the main process running inside the Docker container (the entry script). So you need a way to catch the signal and then trigger the exit script.
See This link for explanation on signal trapping and an example (near the end of the page)
Create a script, and save it as a bash file, that contains that following:
$CONTAINER_NAME="someNameHere"
docker exec -it $CONTAINER_NAME bash -c "sh script-exit.sh"
docker stop $CONTAINER_NAME
Run that file instead of running docker stop, and that should do the trick. You can setup an alias for that as well.
As for automating it inside of Docker itself, I've never seen it done before. Good luck figuring it out, if that's the road you want to take.

How to run shell script on host from docker container?

How to control host from docker container?
For example, how to execute copied to host bash script?
This answer is just a more detailed version of Bradford Medeiros's solution, which for me as well turned out to be the best answer, so credit goes to him.
In his answer, he explains WHAT to do (named pipes) but not exactly HOW to do it.
I have to admit I didn't know what named pipes were when I read his solution. So I struggled to implement it (while it's actually very simple), but I did succeed.
So the point of my answer is just detailing the commands you need to run in order to get it working, but again, credit goes to him.
PART 1 - Testing the named pipe concept without docker
On the main host, chose the folder where you want to put your named pipe file, for instance /path/to/pipe/ and a pipe name, for instance mypipe, and then run:
mkfifo /path/to/pipe/mypipe
The pipe is created.
Type
ls -l /path/to/pipe/mypipe
And check the access rights start with "p", such as
prw-r--r-- 1 root root 0 mypipe
Now run:
tail -f /path/to/pipe/mypipe
The terminal is now waiting for data to be sent into this pipe
Now open another terminal window.
And then run:
echo "hello world" > /path/to/pipe/mypipe
Check the first terminal (the one with tail -f), it should display "hello world"
PART 2 - Run commands through the pipe
On the host container, instead of running tail -f which just outputs whatever is sent as input, run this command that will execute it as commands:
eval "$(cat /path/to/pipe/mypipe)"
Then, from the other terminal, try running:
echo "ls -l" > /path/to/pipe/mypipe
Go back to the first terminal and you should see the result of the ls -l command.
PART 3 - Make it listen forever
You may have noticed that in the previous part, right after ls -l output is displayed, it stops listening for commands.
Instead of eval "$(cat /path/to/pipe/mypipe)", run:
while true; do eval "$(cat /path/to/pipe/mypipe)"; done
(you can nohup that)
Now you can send unlimited number of commands one after the other, they will all be executed, not just the first one.
PART 4 - Make it work even when reboot happens
The only caveat is if the host has to reboot, the "while" loop will stop working.
To handle reboot, here what I've done:
Put the while true; do eval "$(cat /path/to/pipe/mypipe)"; done in a file called execpipe.sh with #!/bin/bash header
Don't forget to chmod +x it
Add it to crontab by running
crontab -e
And then adding
#reboot /path/to/execpipe.sh
At this point, test it: reboot your server, and when it's back up, echo some commands into the pipe and check if they are executed.
Of course, you aren't able to see the output of commands, so ls -l won't help, but touch somefile will help.
Another option is to modify the script to put the output in a file, such as:
while true; do eval "$(cat /path/to/pipe/mypipe)" &> /somepath/output.txt; done
Now you can run ls -l and the output (both stdout and stderr using &> in bash) should be in output.txt.
PART 5 - Make it work with docker
If you are using both docker compose and dockerfile like I do, here is what I've done:
Let's assume you want to mount the mypipe's parent folder as /hostpipe in your container
Add this:
VOLUME /hostpipe
in your dockerfile in order to create a mount point
Then add this:
volumes:
- /path/to/pipe:/hostpipe
in your docker compose file in order to mount /path/to/pipe as /hostpipe
Restart your docker containers.
PART 6 - Testing
Exec into your docker container:
docker exec -it <container> bash
Go into the mount folder and check you can see the pipe:
cd /hostpipe && ls -l
Now try running a command from within the container:
echo "touch this_file_was_created_on_main_host_from_a_container.txt" > /hostpipe/mypipe
And it should work!
WARNING: If you have an OSX (Mac OS) host and a Linux container, it won't work (explanation here https://stackoverflow.com/a/43474708/10018801 and issue here https://github.com/docker/for-mac/issues/483 ) because the pipe implementation is not the same, so what you write into the pipe from Linux can be read only by a Linux and what you write into the pipe from Mac OS can be read only by a Mac OS (this sentence might not be very accurate, but just be aware that a cross-platform issue exists).
For instance, when I run my docker setup in DEV from my Mac OS computer, the named pipe as explained above does not work. But in staging and production, I have Linux host and Linux containers, and it works perfectly.
PART 7 - Example from Node.JS container
Here is how I send a command from my Node.JS container to the main host and retrieve the output:
const pipePath = "/hostpipe/mypipe"
const outputPath = "/hostpipe/output.txt"
const commandToRun = "pwd && ls-l"
console.log("delete previous output")
if (fs.existsSync(outputPath)) fs.unlinkSync(outputPath)
console.log("writing to pipe...")
const wstream = fs.createWriteStream(pipePath)
wstream.write(commandToRun)
wstream.close()
console.log("waiting for output.txt...") //there are better ways to do that than setInterval
let timeout = 10000 //stop waiting after 10 seconds (something might be wrong)
const timeoutStart = Date.now()
const myLoop = setInterval(function () {
if (Date.now() - timeoutStart > timeout) {
clearInterval(myLoop);
console.log("timed out")
} else {
//if output.txt exists, read it
if (fs.existsSync(outputPath)) {
clearInterval(myLoop);
const data = fs.readFileSync(outputPath).toString()
if (fs.existsSync(outputPath)) fs.unlinkSync(outputPath) //delete the output file
console.log(data) //log the output of the command
}
}
}, 300);
Use a named pipe.
On the host OS, create a script to loop and read commands, and then you call eval on that.
Have the docker container read to that named pipe.
To be able to access the pipe, you need to mount it via a volume.
This is similar to the SSH mechanism (or a similar socket-based method), but restricts you properly to the host device, which is probably better. Plus you don't have to be passing around authentication information.
My only warning is to be cautious about why you are doing this. It's totally something to do if you want to create a method to self-upgrade with user input or whatever, but you probably don't want to call a command to get some config data, as the proper way would be to pass that in as args/volume into docker. Also, be cautious about the fact that you are evaling, so just give the permission model a thought.
Some of the other answers such as running a script. Under a volume won't work generically since they won't have access to the full system resources, but it might be more appropriate depending on your usage.
The solution I use is to connect to the host over SSH and execute the command like this:
ssh -l ${USERNAME} ${HOSTNAME} "${SCRIPT}"
UPDATE
As this answer keeps getting up votes, I would like to remind (and highly recommend), that the account which is being used to invoke the script should be an account with no permissions at all, but only executing that script as sudo (that can be done from sudoers file).
UPDATE: Named Pipes
The solution I suggested above was only the one I used while I was relatively new to Docker. Now in 2021 take a look on the answers that talk about Named Pipes. This seems to be a better solution.
However, nobody there mentioned anything about security. The script that will evaluate the commands sent through the pipe (the script that calls eval) must actually not use eval for the whole pipe output, but to handle specific cases and call the required commands according to the text sent, otherwise any command that can do anything can be sent through the pipe.
That REALLY depends on what you need that bash script to do!
For example, if the bash script just echoes some output, you could just do
docker run --rm -v $(pwd)/mybashscript.sh:/mybashscript.sh ubuntu bash /mybashscript.sh
Another possibility is that you want the bash script to install some software- say the script to install docker-compose. you could do something like
docker run --rm -v /usr/bin:/usr/bin --privileged -v $(pwd)/mybashscript.sh:/mybashscript.sh ubuntu bash /mybashscript.sh
But at this point you're really getting into having to know intimately what the script is doing to allow the specific permissions it needs on your host from inside the container.
My laziness led me to find the easiest solution that wasn't published as an answer here.
It is based on the great article by luc juggery.
All you need to do in order to gain a full shell to your linux host from within your docker container is:
docker run --privileged --pid=host -it alpine:3.8 \
nsenter -t 1 -m -u -n -i sh
Explanation:
--privileged : grants additional permissions to the container, it allows the container to gain access to the devices of the host (/dev)
--pid=host : allows the containers to use the processes tree of the Docker host (the VM in which the Docker daemon is running)
nsenter utility: allows to run a process in existing namespaces (the building blocks that provide isolation to containers)
nsenter (-t 1 -m -u -n -i sh) allows to run the process sh in the same isolation context as the process with PID 1.
The whole command will then provide an interactive sh shell in the VM
This setup has major security implications and should be used with cautions (if any).
Write a simple server python server listening on a port (say 8080), bind the port -p 8080:8080 with the container, make a HTTP request to localhost:8080 to ask the python server running shell scripts with popen, run a curl or writing code to make a HTTP request curl -d '{"foo":"bar"}' localhost:8080
#!/usr/bin/python
from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer
import subprocess
import json
PORT_NUMBER = 8080
# This class will handles any incoming request from
# the browser
class myHandler(BaseHTTPRequestHandler):
def do_POST(self):
content_len = int(self.headers.getheader('content-length'))
post_body = self.rfile.read(content_len)
self.send_response(200)
self.end_headers()
data = json.loads(post_body)
# Use the post data
cmd = "your shell cmd"
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
p_status = p.wait()
(output, err) = p.communicate()
print "Command output : ", output
print "Command exit status/return code : ", p_status
self.wfile.write(cmd + "\n")
return
try:
# Create a web server and define the handler to manage the
# incoming request
server = HTTPServer(('', PORT_NUMBER), myHandler)
print 'Started httpserver on port ' , PORT_NUMBER
# Wait forever for incoming http requests
server.serve_forever()
except KeyboardInterrupt:
print '^C received, shutting down the web server'
server.socket.close()
If you are not worried about security and you're simply looking to start a docker container on the host from within another docker container like the OP, you can share the docker server running on the host with the docker container by sharing it's listen socket.
Please see https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface and see if your personal risk tolerance allows this for this particular application.
You can do this by adding the following volume args to your start command
docker run -v /var/run/docker.sock:/var/run/docker.sock ...
or by sharing /var/run/docker.sock within your docker compose file like this:
version: '3'
services:
ci:
command: ...
image: ...
volumes:
- /var/run/docker.sock:/var/run/docker.sock
When you run the docker start command within your docker container,
the docker server running on your host will see the request and provision the sibling container.
credit: http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
As Marcus reminds, docker is basically process isolation. Starting with docker 1.8, you can copy files both ways between the host and the container, see the doc of docker cp
https://docs.docker.com/reference/commandline/cp/
Once a file is copied, you can run it locally
docker run --detach-keys="ctrl-p" -it -v /:/mnt/rootdir --name testing busybox
# chroot /mnt/rootdir
#
I have a simple approach.
Step 1: Mount /var/run/docker.sock:/var/run/docker.sock (So you will be able to execute docker commands inside your container)
Step 2: Execute this below inside your container. The key part here is (--network host as this will execute from host context)
docker run -i --rm --network host -v /opt/test.sh:/test.sh alpine:3.7
sh /test.sh
test.sh should contain the some commands (ifconfig, netstat etc...) whatever you need.
Now you will be able to get host context output.
You can use the pipe concept, but use a file on the host and fswatch to accomplish the goal to execute a script on the host machine from a docker container. Like so (Use at your own risk):
#! /bin/bash
touch .command_pipe
chmod +x .command_pipe
# Use fswatch to execute a command on the host machine and log result
fswatch -o --event Updated .command_pipe | \
xargs -n1 -I "{}" .command_pipe >> .command_pipe_log &
docker run -it --rm \
--name alpine \
-w /home/test \
-v $PWD/.command_pipe:/dev/command_pipe \
alpine:3.7 sh
rm -rf .command_pipe
kill %1
In this example, inside the container send commands to /dev/command_pipe, like so:
/home/test # echo 'docker network create test2.network.com' > /dev/command_pipe
On the host, you can check if the network was created:
$ docker network ls | grep test2
8e029ec83afe test2.network.com bridge local
In my scenario I just ssh login the host (via host ip) within a container and then I can do anything I want to the host machine
I found answers using named pipes awesome. But I was wondering if there is a way to get the output of the executed command.
The solution is to create two named pipes:
mkfifo /path/to/pipe/exec_in
mkfifo /path/to/pipe/exec_out
Then, the solution using a loop, as suggested by #Vincent, would become:
# on the host
while true; do eval "$(cat exec_in)" > exec_out; done
And then on the docker container, we can execute the command and get the output using:
# on the container
echo "ls -l" > /path/to/pipe/exec_in
cat /path/to/pipe/exec_out
If anyone interested, my need was to use a failover IP on the host from the container, I created this simple ruby method:
def fifo_exec(cmd)
exec_in = '/path/to/pipe/exec_in'
exec_out = '/path/to/pipe/exec_out'
%x[ echo #{cmd} > #{exec_in} ]
%x[ cat #{exec_out} ]
end
# example
fifo_exec "curl https://ip4.seeip.org"
Depending on the situation, this could be a helpful resource.
This uses a job queue (Celery) that can be run on the host, commands/data could be passed to this through Redis (or rabbitmq). In the example below, this is occurring in a django application (which is commonly dockerized).
https://www.codingforentrepreneurs.com/blog/celery-redis-django/
To expand on user2915097's response:
The idea of isolation is to be able to restrict what an application/process/container (whatever your angle at this is) can do to the host system very clearly. Hence, being able to copy and execute a file would really break the whole concept.
Yes. But it's sometimes necessary.
No. That's not the case, or Docker is not the right thing to use. What you should do is declare a clear interface for what you want to do (e.g. updating a host config), and write a minimal client/server to do exactly that and nothing more. Generally, however, this doesn't seem to be very desirable. In many cases, you should simply rethink your approach and eradicate that need. Docker came into an existence when basically everything was a service that was reachable using some protocol. I can't think of any proper usecase of a Docker container getting the rights to execute arbitrary stuff on the host.

Resources