Can get final CNF formula from Z3? - z3

Here is my simple encoding. I would like to get the final Boolean CNF that presents all these constrains. Is there any option in Z3 solver to get the final Boolean CNF ?
x = Int('x')
y = Int('y')
c1 = And(x >= 1, x <= 10)
c2 = And(y >= 1, y <= 10)
c3 = Distinct(x,y)
s = Solver()
s.add(c1 , c2 , c3)
# I need the final Boolean CNF formula from Z3 solver...
Thanks & Regards

As Ayrat says, use goals and tactics.
Here is an example: http://rise4fun.com/Z3Py/4I3
x = Int('x')
y = Int('y')
c1 = And(x >= 1, x <= 10)
c2 = And(y >= 1, y <= 10)
c3 = Distinct(x,y)
g = Goal()
g.add(c1 , c2 , c3)
describe_tactics()
t = Tactic('tseitin-cnf')
print t(g)

Related

A Skolem model in Z3 should be unique, but is printing several (and repeated)

I am testing how similar are "assignment"-like models and "Skolem-function"-like models in Z3.
Thus, I proposed an experiment: I will create a formula for which the unique model is y=2; and try to "imitate" this formula so that the (unique) model is a Skolem function f(x)=2. I did this by using ExistsForall quantification for the y=2 case and ForallExists quantification for the f(x)=2 case.
Thus, I first performed the following (note that the y is existentially quantified from the top-level declaration):
from z3 import *
x,y = Ints('x y')
ct_0 = (x >= 2)
ct_1 = (y > 1)
ct_2 = (y <= x)
phi = ForAll([x], Implies(ct_0, And(ct_1,ct_2)))
s = Solver()
s.add(phi)
print(s.check())
print(s.model())
for i in range(0, 5):
if s.check() == sat:
m = s.model()[y]
print(m)
s.add(And(y != m))
This code successfully prints out y=2 as a unique model (no matter we asked for 5 more). Now, I tried the same for f(x)=2 (note that there is no y):
skolem = Function('skolem', IntSort(), IntSort())
x = Int('x')
ct0 = (x >= 2)
ct1 = (skolem(x) > 1)
ct2 = (skolem(x) <= x)
phi1 = ForAll([x], Implies(ct0, And(ct1,ct2)))
s = Solver()
s.add(phi1)
for i in range(0, 5):
if s.check() == sat:
m = s.model()
print(m)
s.add(skolem(x) != i)
This prints:
[skolem = [else -> 2]]
[x = 0, skolem = [else -> If(2 <= Var(0), 2, 1)]]
[x = 0, skolem = [else -> If(2 <= Var(0), 2, -1)]]
[x = 0, skolem = [else -> If(2 <= Var(0), 2, -1)]]
[x = 0, skolem = [else -> If(2 <= Var(0), 2, -1)]]
My question is: why is the y=2 unique, whereas we get several Skolem functions? In Skolem functions, we get (and repeatedly) some functions in which the antecedent of phi1 (i.e., (x >= 2)) is negated (e.g., x=0); but in models, we do not get stuff like x=0 implies y=1, we only get y=2 because that is the unique model that does not depend on x. In the same way, [skolem = [else -> 2]] should be the unique "Skolem model" that does not depend on x.
There's a fundamental difference between these two queries. In the first one, you're looking for a single y that acts as the value that satisfies the property. And indeed y == 2 is the only choice.
But when you have a skolem function, you have an infinite number of witnesses. The very first one is:
skolem(x) = 2
i.e., the function that maps everything to 2. (You're internally equating this to the model y=2 in the first problem, but that's misleading.)
But there are other functions too. Here's the second one:
skolem(x) = if 2 <= x then 2 else 1
You can convince yourself this is perfectly fine, since it does give you the skolem function that provides a valid value for y (i.e., 2), when the consequent matters. What it returns in the else case is immaterial. (i.e., when x < 2). And similarly, you can simply do different things when x < 2, giving you an infinite number of skolem functions that work. (Of course, the difference is not interesting, but different nonetheless.)
What you really are trying to say, I guess, is there's nothing "else" that's interesting. Unfortunately that's harder to automate, since it's hard to get a Python function back from a z3 model. But you can do it manually:
from z3 import *
skolem = Function('skolem', IntSort(), IntSort())
x = Int('x')
ct0 = (x >= 2)
ct1 = (skolem(x) > 1)
ct2 = (skolem(x) <= x)
phi1 = ForAll([x], Implies(ct0, And(ct1,ct2)))
s = Solver()
s.add(phi1)
print(s.check())
print(s.model())
# The above gives you the model [else -> 2], i.e., the function that maps everything to 2.
# Let's add a constraint that says we want something "different" in the interesting case of "x >= 2":
s.add(ForAll([x], Implies(x >= 2, skolem(x) != 2)))
print(s.check())
This prints:
sat
[skolem = [else -> 2]]
unsat
which attests to the uniqueness of the skolem-function in the "interesting" case.

Why is Z3 giving me unsat for the following formula?

I have the following formula and Python code trying to find the largest n satisfying some property P:
x, u, n, n2 = Ints('x u n n2')
def P(u):
return Implies(And(2 <= x, x <= u), And(x >= 1, x <= 10))
nIsLargest = ForAll(n2, Implies(P(n2), n2 <= n))
exp = ForAll(x, And(P(n), nIsLargest))
s = SolverFor("LIA")
s.reset()
s.add(exp)
print(s.check())
if s.check() == sat:
print(s.model())
My expectation was that it would return n=10, yet Z3 returns unsat. What am I missing?
You're using the optimization API incorrectly; and your question is a bit confusing since your predicate P has a free variable x: Obviously, the value that maximizes it will depend on both x and u.
Here's a simpler example that can get you started, showing how to use the API correctly:
from z3 import *
def P(x):
return And(x >= 1, x <= 10)
n = Int('n')
opt = Optimize()
opt.add(P(n))
maxN = opt.maximize(n)
r = opt.check()
print(r)
if r == sat:
print("maxN =", maxN.value())
This prints:
sat
maxN = 10
Hopefully you can take this example and extend it your use case.

Retrieve a value in Z3Py yields unexpected result

I want to find a maximal interval in which an expression e is true for all x. A way to write such a formula should be: Exists d : ForAll x in (-d,d) . e and ForAll x not in (-d,d) . !e.
To get such a d, the formula f in Z3 (looking at the one above) could be the following:
from z3 import *
x = Real('x')
delta = Real('d')
s = Solver()
e = And(1/10000*x**2 > 0, 1/5000*x**3 + -1/5000*x**2 < 0)
f = ForAll(x,
And(Implies(And(delta > 0,
-delta < x, x < delta,
x != 0),
e),
Implies(And(delta > 0,
Or(x > delta, x < -delta),
x != 0),
Not(e))
)
)
s.add(Not(f))
s.check()
print s.model()
It prints: [d = 2]. This is surely not true (take x = 1). What's wrong?
Also: by specifying delta = RealVal('1'), a counterexample is x = 0, even when x = 0 should be avoided.
Your constants are getting coerced to integers. Instead of writing:
1/5000
You should write:
1.0/5000.0
You can see the generated expression by:
print s.sexpr()
which would have alerted you to the issue.
NB. Being explicit about types is always important when writing constants. See this answer for a variation on this theme that can lead to further problems: https://stackoverflow.com/a/46860633/936310

Incorrect model of max value in Z3Py

I want to find a maximal interval in which an expression e is true for all x. A way to write such a formula should be: Exists d : ForAll x in (-d,d) . e and ForAll x not in (-d,d) . !e.
To get such a d, the formula f in Z3 (looking at the one above) could be the following:
from __future__ import division
from z3 import *
x = Real('x')
delta = Real('d')
s = Solver()
e = And(1/10000*x**2 > 0, 1/5000*x**3 + -1/5000*x**2 < 0)
f = ForAll(x,
And(Implies(And(delta > 0,
-delta < x, x < delta,
x != 0),
e),
Implies(And(delta > 0,
Or(x > delta, x < -delta),
x != 0),
Not(e))
)
)
s.add(Not(f))
s.check()
print s.model()
Which outputs [d = 1/4].
To check it, I set delta = RealVal('1/4'), drop the ForAll quantifier from f and I get x = 1/2. I replace delta with 1/2 and get 3/4, then 7/8 and so on. The bound should be 1. Can I get Z3 to output that immediately?
If you do the math yourself, you can see that the solution is x != 0, x < 1. Or you can simply ask Wolfram Alpha to do it for you. So, there's no such delta.
The issue you're having is that you're asserting:
s.add(Not(f))
This turns the universal quantification on x into an existential; asking z3 to find a delta such that there is some x that fits the bill. (That is, you're negating your whole formula.) Instead, you should do:
s.add(delta > 0, f)
which also makes sure that delta is positive. With that change, z3 will correctly respond:
unsat
(And then you'll get an error for the call to s.model(), you should only call s.model() if the previous call to s.check() returns sat.)

Some proofs of validity using Z3Py online and a strategy proposed by Nikolaj Bjorner

Lemma: forall x : R, x <> 0 -> (x / x) = 1.
Proof:
x = Real('x')
s = Solver()
s.add(Or(x >0, x < 0), Not(x/x ==1))
print s.check()
and the output is :
unsat
Qed.
Lemma: forall x y : R, x <> 0, y <> 0 -> (x / x + y / y) = 2.
Proof:
x, y = Reals('x y')
s = Solver()
s.add(Or(x >0, x < 0), Or(y >0, y < 0), Not(x/x + y/y ==2))
print s.check()
and the output is:
unsat
Qed.
Lemma: forall x y : R, x <> 0, y <> 0 -> (x / x + x / y) = ((x + y) / y).
Proof:
x, y = Reals('x y')
s = Solver()
s.add(Or(x >0, x < 0), Or(y >0, y < 0), Not(x/x + x/y == (x+y)/y))
print s.check()
and the output is:
unsat
Qed.
These lemmas were proved using Coq + Maple at
http://coq.inria.fr/V8.2pl1/contribs/MapleMode.Examples.html
Please let me know if my proofs with Z3Py are correct and if you know a more direct form to prove them using Z3Py. Many thanks.
There is a slightly more compact way by using the "prove" command instead of the solver object.
For example:
x, y = Reals('x y')
prove(Implies(And(Or(x >0, x < 0), Or(y >0, y < 0)), (x/x + x/y == (x+y)/y)))

Resources