How to query data in fusion tables - google-fusion-tables

I have two datasets on fusion tables. One is a points layer (libraries) and the other is a polygon layer (land parcels). How do I design a query using Google Maps/fusion table to figure out this question: how many land parcels are within 1km (for example) of the library?
Also, I've seen some of the like this one where the search distance is pre-defined. Is it possible to design a query that doesn't have predefined search distances? I would prefer to have the distance undefined.
I understand that this task will require the use of javascript (I'm still a beginner), so help in that area would also be greatly appreciated.
Thanks for your help!

Related

How to identify relevant columns in very wide tables using AI and Machine Learning?

I have a complex data model consisting of around hundred tables containing business data. Some tables are very wide, up to four hundred columns. Columns can have various data types - integers, decimals, text, dates etc. I'm looking for a way to identify relevant / important information stored in these tables.
I fully understand that business knowledge is essential to correctly process a data model. What I'm looking for are some strategies to pre-process tables and identify columns that should be taken to later stage where analysts will actually look into it. For example, I could use data profiling and statistics to find and exclude columns that don't have any data at all. Or maybe all records have the same value. This way I could potentially eliminate 30% of fields. However, I'm interested in exploring how AI and Machine Learning techniques could be used to identify important columns, hoping I could identify around 80% of relevant data. I'm aware, that relevant information will depend on the questions I want to ask. But even then, I hope I could narrow the columns to simplify the manual assesment taking place in the next stage.
Could anyone provide some guidance on how to use AI and Machine Learning to identify relevant columns in such wide tables? What strategies and techniques can be used to pre-process tables and identify columns that should be taken to the next stage?
Any help or guidance would be greatly appreciated. Thank you.
F.
The most common approach I've seen to evaluate the analytical utility of columns is the correlation method. This would tell you if there is a relationship (positive or negative) among specific column pairs. In my experience you'll be able to more easily build analysis outputs when columns are correlated - although, these analyses may not always be the most accurate.
However, before you even do that, like you indicate, you would probably need to narrow down your list of columns using much simpler methods. For example, you could surely eliminate a whole bunch of columns based on datatype and basic count statistics.
Less common analytic data types (ids, blobs, binary, etc) can probably be excluded first, followed by running simple COUNT(Distinct(ColName)), and Count(*) where ColName is null . This will help to eliminating UniqueIDs, Keys, and other similar data types. If all the rows are distinct, this would not be a good field for analysis. Same process for NULLs, if the percentage of nulls is greater than some threshold then you can eliminate those columns as well.
In order to automate it depending on your database, you could create a fairly simple stored procedure or function that loops through all the tables and columns and does a data type, count_distinct and a null percentage analysis on each field.
Once you've narrowed down list of columns, you can consider a .corr() function to run the analysis against all the remaining columns in something like a Python script.
If you wanted to keep everything in the database, Postgres also supports a corr() aggregate function, but you'll only be able to run this on 2 columns at a time, like this:
SELECT corr(column1,column2) FROM table;
so you'll need to build a procedure that evaluates multiple columns at once.
Thought about this tech challenges for some time. In general it’s AI solvable problem since there are easy features to extract such as unique values, clustering, distribution, etc.
And we want to bake this ability in https://columns.ai, obviously we haven’t gotten there yet, the first step we have done though is to collect all columns stats upon a data connection, identify columns that have similar range of unique values and generate a bunch of query templates for users to explore its dataset.
If interested, please take a look, as we keep advancing this part, it will become closer to an AI model to find relevant columns. Cheers!

Data model of existing data in Neo4J

I have a small dataset loaded into Neo4J consisting of a 6 node labels with about 20 nodes for each label and there are about 10 different relationships. I was wondering if you can automatically create a picture of this data model using the data available in the database.
I would like to create something like this automatically from the data:
taken from http://neo4j.com/docs/stable/cypherdoc-movie-database.html
I know that it would be quite simple doing it manually in this example but it could come in handy looking at more complex data models.
Any suggestions?
Thank you Michael, that helped. There is also functionality in the web tool that ships with Neo4J that can do something similar although less graphically.
You click on the little bubbles in the top left corner of the interface and then there is a predefined query that extracts all lables and relations from the graph.

Logic for selecting best nearby venues for display on a map

I have an app that displays information about certain venues. Each venue is awarded a rating on a scale from 0-100. The app includes a map, and on the map I'd like to show the best nearby venues. (The point is to recommend to the user alternative venues that they might like.)
What is the best way to approach this problem?
If I fetch the nearest x venues, many bad venues (i.e. those with a
low rating) show.
If I fetch the highest rated venues, many of them
will be too far away to be useful as recommendations.
This seems like a pretty common challenge for any geolocation app, so I'm interested to know what approach other people have taken.
I have considered "scoring" each possible venue by taking into account its rating and its distance in miles.
I've also considered fetching the highest rated venues within a y mile radius, but this gets problematic because in some cities there are a lot of venues in a small area (e.g. New York) and in others it's reasonable to recommend venues that are farther away.
(This is a Rails app, and I'm using Solr with the Sunspot gem to retrieve the data. But I'm not necessarily looking for answers in code here, more just advice about the logic.)
Personally, I would implement a few formulas and use some form of A/B testing to get an idea as to which ones yield the best results on some outcome metric. What exactly that metric is is up to you. It could be clicks, or it could be something more complicated.
Start out with the simplest formula you can think of (ideally one that is computationally cheap as well) to establish a baseline. From there, you can iterate, but the absolute key concept is that you'll have hard data to tell you if you're getting better or worse, not just a hunch (perhaps that a more complicated formula is better). Even if you got your hands on Yelp's formula, it might not work for you.
For instance, as you mentioned, a single score calculated based on some linear combination of inverse distance and establishment quality would be a good starting point and you can roll it out in a few minutes. Make sure to normalize each component score in some way. Here's a possible very simple algorithm you could start with:
Filter venues as much as possible on fast-to-query attributes (by type, country, etc.)
Filter remaining venues within a fairly wide radius (you'll need to do some research into exactly how to do this in a performant way; there are plenty of posts on Stackoverflow and else where on this. You'll want to index your database table on latitude and longitude, and follow a number of other best practices).
Score the remaining venues using some weights that seem intuitive to you (I arbitrarily picked 0.25 and 0.75, but they should add up to 1:
score = 0.25*(1-((distance/distance of furthest venue in remaining
set)-distance of closest venue)) + 0.75*(quality score/highest quality
score in remaining set)
Sort them by score and take the top n
I would put money on Yelp using some fancy-pants version of this simple idea. They may be using machine learning to actually select the weights for each component score, but the conceptual basis is similar.
While there are plenty of possibilities for calculating formulas of varying complexity, the only way to truly know which one works best is to gather data.
I would fix the number of venues returned at say 7.
Discard all venues with scores in the lowest quartile of reviewers scores, to avoid bad customer experiences, then return the top 7 within a postcode. If this results in less than 7 entries, then look to the neighboring post codes to find the best scores to complete the list.
This would result in a list of top to mediocre scores locally, perhaps with some really good scores only a short distance away.
From a UX perspective this would easily allow users to either select a postcode/area they are interested in or allow the app to determine its location.
From a data perspective, you already have addresses. The only "tricky" bit is determining what the neighboring postcodes/areas are, but I'm sure someone has figured that out already.
As an aside, I'm a great believer in things changing. Like restaurants changing hands or the owners waking up and getting better. I would consider offering a "dangerous" list of sub-standard eateries "at your own risk" as another form of evening entertainment. Personally I have found some of my worst dining experiences have formed some of my best dining out stories :-) And if the place has been harshly judged in the past you can sometimes find it is now a gem in the making.
First I suggest that you use bayesian average to maintain an overall rating for all the venues, more info here: https://github.com/tyrauber/acts_rateable
Then you can retrieve the nearest venues ordered by distance then ordered by rating. two order by statements in your query

Neo4j Structure for GPS coordinates log

I'm using neo4j for a, let's call it, social network where users will have the ability to log their position during workouts (think Runkeeper and Strava).
I'm thinking about how I want to save the coordinates.
Is it a good idea to have it like node(user)-has->node(workouts)<-is a-node(workout)-start->node(coord)-next->node(coord)-next->.... i.e. a linked list with coordinates for every workout?
I will never query the db for individual points, the workout will always be retrieved as a whole.
Is it a better way to solve this?
I can image that a graph db isn't the ideal db to store this type of data, but I don't want to add the complexity of adding another db right now.
Can someone give me any insight on this?
I would suggest you store it as:
user --has--> workout --positionedAt--> coord
This design feels more natural to me as the linked list design you mentioned in your question just produces a really deep traversal which might be annoying to query. In this way you can easily find all the coordinates for a particular workout by simply iterating edges on the workout vertex. I would recommend storing a datetime stamp on the positionedAt edge so that you can sort your coordinates easily.
The downside is that depending on how many coord vertices you intend to have you might end up with some fat workout vertices, but that may not really affect your use case. I can't think of a workout that would generate something like 100000 coordinates (and hence 100000 edges), but perhaps you can. If so, I suppose I could amend my answer a bit.

Architecture of finding movable geotagged objects

I currently have a Postgres DB filled with approx. 300.000 data-sets of moving vehicles all over the world. My very frequently repeated query is: Give me all vehicles in a 5/10/20mile radius. Currently I spend around 600 to 1200 ms in the DB to prepare the set of located vehicle-objects.
I am looking to vastly improve this time by ideally one or two orders of magnitude if possible. I am working in a Ruby on Rails 3.0beta environment if this is relevant.
Any ideas how to architect the whole system to accelerate this query? Any NoSQL database able to deliver this kind of geolocation performance? I know of MongoDB working on an extension to facilitate this scenario but haven't tried it yet. Any intelligent use of Redis to achieve this?
One problem with SQL-DBs here seems to be that I can't possibly use indexes because my vehicles are mostly moving around, meaning I had to constantly created DB indexes which, by itself, is probably more expensive than just doing the searching without index.
Looking forward to your thoughs, Thanks!
If you use the right algorithm for organizing your data, you will be able to use a spatial index which can dramatically speed up your queries.
The best practice for the geolocation domain is to use a geohash, quad-tree, R-tree or similar data structure (R-trees are the most generic, but it sounds like you're querying point data, so that may not matter). In each case, you can create a spatial index that uses a single, linear column where each value represents a bounding box of varying size and shape. This should let you answer most queries with a single range query in your database. Spatial indices can be implemented in SQL (PostGIS, MS SQL, MySQL all have spatial datatypes and spatial indices which use one of these techniques) or NoSQL (popular for its horizontal scalability; AppEngine has geomodel, SimpleGeo uses Cassandra, Foursquare uses MongoDB).
Using an index can be complicated by constantly moving points, but I would suspect that writes, even slightly heavier writes that update indices, wouldn't be your bottleneck.
Even though your vehicles are moving around all the time, I assume they have some kind of speed limit. What you can do is to create some kind of discrete coordinate system, one example would be the integer part of the lat/long coordinate. Then you put those values in separate columns, keeping the exact location in another column. You should then be able to index the integer columns, as the vehicles won't move so much that they change those values very often.
When doing a search, you first find out what "squares" are interesting, and restrict your query to the vechicles within those sqeares, using the indexed columns. Then you have to do a full search of all vehicles within each square. The number of vehicles you have to do a full search over should now only be a small fraction of all vechiles. The efficiency of this strategy of course depends on the distribution of your vechiles. If 50% of them are in a certain city somewhere this will not work, but assuming the largest group of vehicles in one place is 5-10% it should improve performance.

Resources