Mapping function from 2D to 1D - mapping

I have 2D elements distributed in a space of [-4, +4] and want to convert any point in the 2D space to a 1D real-valued number such that 1st quadrant [+, +] should have higher values (importance), 2nd and 3rd quadrant [+, -] and [-, +] should be next, and the 4th quadrant [-, -] should have the least values.
How can I have such a mapping function!
Thanks!

Related

Reconstruct image from eigenvectors obtained from solving the eigenfunction of Hamiltonian operator in matrix form

I have an Image I
I am trying to do Automatic Object Extraction using Quantum Mechanics
Each pixel in an image is considered as a potential field, V(x,y) and hence each wave (eigen) function represents a meaningful region.
2D Time-independent Sschrodinger's equation
Multiplying both sides by
We get,
Rewriting the Laplacian using Finite Difference approach
where Ni is the set of neighbours with index i, and |Ni| is the cardinality of, i.e. the number of elements in Ni
Combining the above two equations, we get:
where M is the number of elements in
Now,the left hand side of the equation is a measure of how similar the labels in a neighbourhood are, i.e. a measure of spatial coherence.
Now, for applying this to images, the potential V is given as the pixel intensities.
Here, V is the pixel intensities
The right hand side is a measure of how close the pixel values in a segment are to a constant value E.
Now, the wave functions can be numerically calculated by solving the eigenvectors of Hamiltonian operator in matrix form which is
for i = j
for
and elsewhere 0
Now, in this paper it is said that first we have to find the maximum and minimum eigenvalues and then calculate the eigenvectors with eigenvalues closest to a number of values regularly selected between the minimum and maximum eigenvalues. the number is 300.
I have calculated the 300 eigenvectors.
And then the absolute square of the eigenvectors are thresholded to obtain the segments.
Fine upto this part.
Now, how do I reconstruct the eigenvectors into a 2D image so as to get the potential segments in the image?

Implementing convolutional neural network backprop in ArrayFire (gradient calculation)

I modified equation 9.12 in http://www.deeplearningbook.org/contents/convnets.html to center the MxN convolution kernel.
That gives the following expression (take it on faith for now) for the gradient, assuming 1 input and 1 output channel (to simplify):
dK(krow, kcol) = sum(G(row, col) * V(row+krow-M/2, col+kcol-N/2); row, col)
To read the above, the single element of dK at krow, kcol is equal to the sum over all of the rows and cols of the product of G times a shifted V. Note G and V have the same dimensions. We will define going outside V to result in a zero.
For example, in one dimension, if G is [a b c d], V is [w x y z], and M is 3, then the first sum is dot (G, [0 w x y]), the second sum is dot (G, [w x y z]), and the third sum is dot (G, [x y z 0]).
ArrayFire has a shift operation, but it does a circular shift, rather than a shift with zero insertion. Also, the kernel sizes MxN are typically small, e.g., 7x7, so it seems a more optimal implementation would read in G and V once only, and accumulate over the kernel.
For that 1D example, we would read in a and w,x and start with [a*0 aw ax]. Then we read in b,y and add [bw bx by]. Then read in c,z and add [cx cy cz]. Then read in d and finally add [dy dz d*0].
Is there a direct way to compute dK in ArrayFire? I can't help but think this is some kind of convolution, but I've been unable to wrap my head around what the convolution would look like.
Ah so. For a 3x3 dK array, I use unwrap to convert my MxN input arrays to two MxN column vectors. Then I do 9 dot products of shifted subsets of the two column vectors. No, that doesn't work since the shift is in 2 dimensions.
So I need to create intermediate arrays of 1 x (MxN) and (MxN) x 9 in size, where each column of the latter is a shifted MxN window of the original with a pad border of zeros of size 1, and then do a matrix multiply.
Hmm, that requires too much memory (sometimes.) So the final solution is to do a gfor over the output 3x3, and for each loop, do a dot product of the unwrapped-once G and the unwrapped-repeatedly V.
Agreed?

How to transform filter when using FFT to do 2d convolution?

I want to use FFT to accelerate 2D convolution. The filter is 15 x 15 and the image is 300 x 300. The filter's size is different with image so I can not doing dot product after FFT. So how to transform the filter before doing FFT so that its size can be matched with image?
I use the convention that N is kernel size.
Knowing the convolution is not defined (mathematically) on the edges (N//2 at each end of each dimension), you would loose N pixels in totals on each axis.
You need to make room for convolution : pad the image with enough "neutral values" so that the edge cases (junk values inserted there) disappear.
This would involve making your image a 307x307px image (with suitable padding values, see next paragraph), which after convolution gives back a 300x300 image.
Popular image processing libraries have this already embedded : when you ask for a convolution, you have extra arguments specifying the "mode".
Which values can we pad with ?
Stolen with no shame from Numpy's pad documentation
'constant' : Pads with a constant value.
'edge' : Pads with the edge values of array.
'linear_ramp' : Pads with the linear ramp between end_value and the arraydge value.
'maximum' :
Pads with the maximum value of all or part of the
vector along each axis.
'mean'
Pads with the mean value of all or part of the
vector along each axis.
'median'
Pads with the median value of all or part of the
vector along each axis.
'minimum'
Pads with the minimum value of all or part of the
vector along each axis.
'reflect'
Pads with the reflection of the vector mirrored on
the first and last values of the vector along each
axis.
'symmetric'
Pads with the reflection of the vector mirrored
along the edge of the array.
'wrap'
Pads with the wrap of the vector along the axis.
The first values are used to pad the end and the
end values are used to pad the beginning.
It's up to you, really, but the rule of thumb is "choose neutral values for the task at hand".
(For instance, padding with 0 when doing averaging makes little sense, because 0 is not neutral in an average of positive values)
it depends on the algorithm you use for the FFT, because most of them need to work with images of dyadic dimensions (power of 2).
Here is what you have to do:
Padding image: center your image into a bigger one with dyadic dimensions
Padding kernel: center you convolution kernel into an image with same dimensions as step 1.
FFT on the image from step 1
FFT on the kernel from step 2
Complex multiplication (Fourier space) of results from steps 3 and 4.
Inverse FFT on the resulting image on step 5
Unpadding on the resulting image from step 6
Put all 4 blocs into the right order.
If the algorithm you use does not need dyadic dimensions, then steps 1 is useless and 2 has to be a simple padding with the image dimensions.

What does closest pixels mean in a digital image?

I need to apply some simple filter to a digital image. It says that for each pixel, I need to get the median of the closest pixels. I wonder since the image for example is M x M. What are the closest pixels? Are they just left, right, upper, lower pixel, and the current pixel (in total 5 pixels) or I need to take into account all the 9 pixels in a 3x3 area?
Follow up question: what if I want the median of the N closest pixels (N = 3)?
Thanks.
I am guessing you are trying to apply median filter to a sample image. By definition of median for an image, you need to look at the neighboring pixels and find the median. There are two definitions which is important, one is the image size which is mn and the other filter kernel size which xy. If the kernel size is of size 3*3, you will need to look at 9 pixels like this:
Find the median of a odd number of pixels is easy, consider you have three 3 pixels x1, x2 and x3 arranged in ascending order of their values. The median of this set of pixels is x2.
Now, if you have an even number of pixels, usually the average of two pixels lying midway is computed. For example, say there are 4 pixels x1, x2, x3 and x4 arranged in ascending order of their values. The median of this set of pixels is (x1+x2)/2.

2D FFT using 1D FFT

I am trying to implement a 2D FFT using 1D FFTs. I have a matrix of size 4x4 (row major)
My algorithm is:
FFT on all 16 points
bit reversal
transpose
FFT on 16 points
bit reversal
transpose
Is this correct?
No - the algorithm is:
do 1D FFT on each row (real to complex)
do 1D FFT on each column resulting from (1) (complex to complex)
So it's 4 x 1D (horizontal) FFTs followed by 4 x 1D (vertical) FFTs, for a total of 8 x 1D FFTs.

Resources