Generating multiple ROC curves in Weka GUI - machine-learning

I'm using the Weka 3.6 GUI to compare the performance of a group of supervised learning algorithms on a dataset. I'm generating separate ROC curves for each learning algorithm. My problem is: is there a way in Weka to generate all ROC curves for all algorithms on the same set of scales (which would make for easier comparison)? If not, what could I do? Thanks.

This is possible. You need to use the KnowledgeFlow GUI though instead of the Experimenter.
In KnowledgeFlow you can load your dataset and perform different algorithms on it. The result of each algorithm can then be combined into the same Model PerformanceChart resulting in a plot which combines the multiple ROC curves. Detailed steps can be found in section 4.2 in this guide.

As far as my experience tells me- No. You can view ROC of one classifier at a time not ROCs of all classifiers in one place. However, to compare, you can take the ROC value from the classifier tab and compare the values (closer to 1 means good classifier).

Related

Which SMOTE algorithm should I use for Augmentation of Time Series dataset?

I am working on a Time Series Dataset where i want to do forcasting and prediction both. So, if you have any suggestion please share. Thank You!
T-Smote
This allows one to both impute fully missing observations to allow uniform time series classification across the entire data and, in special cases, to impute individually missing features. To do so, we slightly generalize the well-known class imbalance algorithm SMOTE to allow component wise nearest neighbor interpolation that preserves correlations when there are no missing features. We visualize the method in the simplified setting of 2-dimensional uncoupled harmonic oscillators. Next, we use tSMOTE to train an Encoder/Decoder long-short term memory (LSTM) model with Logistic Regression for predicting and classifying distinct trajectories of different 2D oscillators.

Relation between coefficients in linear regression and feature importance in decision trees

Recently I have a Machine Learning(ML) project, which needs to identify the features(inputs, a1,a2,a3 ... an) that have large impacts on target/outputs.
I used linear regression to get the coefficients of the feature, and decision trees algorithm (for example Random Forest Regressor) to get important features (or feature importance).
Is my understanding right that the feature with large coefficient in linear regression shall be among the top list of importance of features in Decision tree algorithm?
Not really, if your input features are not normalized, you could have a relatively big co-efficient for features with a relatively big mean/std. If your features are normalized, then yes, this could be an indicator to the features importance, but there are still other things to consider.
You could try some of sklearn's feature selection classes that should do this automatically for you here.
Short answer to your question is No, not necessarily. Considering the fact that we do not know what are your different inputs, if they are in the same unit system, range of variation and etc.
I am not sure why you have combined Linear regression with Decision tree. But I just assume you have a working model, say a linear regression which provides good accuracy on the test set. From what you have asked, you probably need to look at sensitivity analysis based on the obtained model. I would suggest doing some reading on "SALib" library and generally the subject of sensitivity analysis.

Machine Learning: Weighting Training Points by Importance

I have a set of labeled training data, and I am training a ML algorithm to predict the label. However, some of my data points are more important than others. Or, analogously, these points have less uncertainty than the others.
Is there a general method to include an importance-representing weight to each training point in the model? Are there instead some specific models which are capable of this while others are not?
I can imagine duplicating these points (and perhaps smearing their features slightly to avoid exact duplicates), or downsampling the less important points. Is there a more elegant way to approach this problem?
Scikit-learn allows you to pass an array of sample weights while fitting the model. Vowpal Wabbit (an online ML library) also has this option.

How to choose classifier on specific dataset

When given the dataset, normally m instances by n features matrix, how to choose the classifier that is most appropriate for the dataset.
This is just like what algorithm to solve a prime Number. Not every algorithm solve any problem means each problem assigned which finite no. of algorithm. In machine learning you can apply different algorithm on a type of problem.
If matrix contain real numbered features then you can use KNN algorithm can be used. Or if matrix have words as feature then you can use naive bayes classifier which is one of best for text classification. And Machine learning have tons of algorithm you can read them apply to your problem which fits best. Hope you understand what I said.
An interesting but much more general map I found:
http://scikit-learn.org/stable/tutorial/machine_learning_map/
If you have weka, you can use experimenter and choose different algorithms on same data set to evaluate different models.
This project compares many different classifiers on different typical datasets.
If you have no idea, you could use this simple tool auto-weka which will test all the different classifiers you selected within different constraints. Before using auto-weka, you may need to convert your data to ARFF using Weka or just manually (many tutorial on youtube).
The best classifier depends on your data (binary/string/real/tags, patterns, distribution...), what kind of output to predict (binary class / multi-class / evolving classes / a value from regression ?) and the expected performance (time, memory, accuracy). It would also depend on whether you want to update your model frequently or not (ie. if it is a stream, better use an online classifier).
Please note that the best classifier may not be one but an ensemble of different classifiers.

What's the meaning of logistic regression dataset labels?

I've learned the Logistic Regression for some days, and i think the logistic regression's dataset's labels needs to be 1 or 0, is it right ?
But when i lookup the libSVM library's regression dataset, i see the label values are continues number(e.g. 1.0086,1.0089 ...), did i miss something ?
Note that the libSVM library could be used for regression problem.
Thanks so much !
Contrary to its name, logistic regression is a classification algorithm and it outputs class probability conditioned on the data point. Therefore the training set labels need to be either 0 or 1. For the dataset you mentioned, logistic regression is not a suitable algorithm.
SVM is a classification algorithm and it uses the input labels -1 or 1. It is not a probabilistic algorithm and it doesn't output class probabilities. It also can be adapted to regression.
Are you using a 3rd party library or programming this yourself? Generally the labels are used as ground truth so you can see how effective your approach was.
For example if your algo is trying to predict what a particular instance is it might output -1, the ground truth label will be +1 which means you did not successfully classify that particular instance.
Note that "regression" is a general term. To say someone will perform regression analysis doesn't necessarily tell you what algorithm they will be using, nor all of the nature of the data sets. All it really tells you is that you have a set of samples with features which you want to use to predict a single outcome value (a model for conditional probability).
One major difference between logistic regression and linear regression is that the former is usually trained on categorical, binary-labeled sample sets; while the latter is trained on real-labeled (ℝ) sample sets.
Any time your labels are real valued, it means you're probably going to use linear regression or similar, or else convert those real valued labels to categorical labels (e.g. via thresholds or bins) if you want to in fact use logistic regression. There is potentially a big difference in the quality and interpretation of your results though, if you try to convert from one such problem setup to another.
See also Regression Analysis.

Resources