I want to use BERTs pretrained model for sequence classification (TFBertForSequenceClassification) and want to find tune the model on my own data. My data consists of some text input, along with categorical variables for characteristics (such as race, age, gender). Is there a way to combine these tow inputs (text and categorical) to train this type of BERT model?
The only thing I have tried is making each of the categorical variables its own token, and then appending the respective token to the end of my tokenized/encoded text input, but this does not seem like the most effective way to train the model.
Related
I have a file of raw feedbacks that needs to be labeled(categorized) and then work as the training input for SVM Classifier(or any classifier for that matter).
But the catch is, I'm not assigning whole feedback to a certain category. One feedback may belong to more than one category based on the topics it talks about (noun n-grams are extracted). So, I'm labeling the topics(terms) not the feedbacks(documents). And so, I've extracted the n-grams using TFIDF while saving their features so i could train my model on. The problem with that is, using tfidf, it returns a document-term matrix that's train_x, but on the other side, I've got train_y; The labels that are assigned to each n-gram (not the whole document). So, I've ended up with a document to frequency matrix that contains x number of rows(no of documents) against a label of y number of n-grams(no of unique topics extracted).
Below is a sample of what the data look like. Blue is the n-grams(extracted by TFIDF) while the red is the labels/categories (calculated for each n-gram with a function I've manually made).
Instead of putting code, this is my strategy in implementing my concept:
The problem lies in that part where TFIDF producesx_train = tf.Transform(feedbacks), which is a document-term matrix and it doesn't make sense for it to be an input for the classifier against y_train, which is the labels for the terms and not the documents. I've tried to transpose the matrix, it gave me an error. I've tried to input 1-D array that holds only feature values for the terms directly, which also gave me an error because the classifier expects from X to be in a (sample, feature) format. I'm using Sklearn's version of SVM and TfidfVectorizer.
Simply, I want to be able to use SVM classifier on a list of terms (n-grams) against a list of labels to train the model and then test new data (after cleaning and extracting its n-grams) for SVM to predict its labels.
The solution might be a very technical thing like using another classifier that expects a different format or not using TFIDF since it's document focused (referenced) or even broader, a whole change of approach and concept (if it's wrong).
I'd very much appreciate it if someone could help.
What is the current state of the art data augmentation technic about text classification?
I made some research online about how can I extend my training set by doing some data transformation, the same we do on image classification.
I found some interesting ideas such as:
Synonym Replacement: Randomly choose n words from the sentence that does not stop words. Replace each of these words with one of its synonyms chosen at random.
Random Insertion: Find a random synonym of a random word in the sentence that is not a stop word. Insert that synonym into a random place in the sentence. Do this n times.
Random Swap: Randomly choose two words in the sentence and swap their positions. Do this n times.
Random Deletion: Randomly remove each word in the sentence with probability p.
But nothing about using pre-trained word vector representation model such as word2vec. Is there a reason?
Data augmentation using a word2vec might help the model to get more data based on external information. For instance, replacing a toxic comment token randomly in the sentence by its closer token in a pre-trained vector space trained specifically on external online comments.
Is it a good method or do I miss some important drawbacks of this technic?
Your idea of using word2vec embedding usually helps. However, that is a context-free embedding. To go one step further, the state of the art (SOTA) as of today (2019-02) is to use a language model trained on large corpus of text and fine-tune your own classifier with your own training data.
The two SOTA models are:
GPT-2 https://github.com/openai/gpt-2
BERT https://github.com/google-research/bert
These data augmentation methods you mentioned might also help (depends on your domain and the number of training examples you have). Some of them are actually used in the language model training (for example, in BERT there is one task to randomly mask out words in a sentence at pre-training time). If I were you I would first adopt a pre-trained model and fine tune your own classifier with your current training data. Taking that as a baseline, you could try each of the data augmentation method you like and see if they really help.
I am new to Data Science and learning to impute and about model training. Below are my few queries that I came across when training the datasets. Please provide answers to these.
Suppose I have a dataset with 1000 observations. Now I train the model on the complete dataset in one go. Another way I did it, I divided my dataset in 80% and 20% and trained my model first at 80% and then on 20% data. Is it same or different? Basically, if I train my already trained model on new data, what does it mean?
Imputing Related
Another question is related to imputing. Imagine I have a dataset of some ship passengers, where only first-class passengers were given cabin. There is a column that holds cabin numbers (categorical) but very few observations have these cabin numbers. Now I know this column is important so I cannot remove it and because it has many missing values, so most of the algorithms do not work. How to handle imputing of this type of column?
When imputing the validation data, do we impute with same values that were used to impute training data or the imputing values are again calculated from validation data itself?
How to impute data in the form of a string like a Ticket number (like A-123). The column is important because the 1st alphabet tells the class of passenger. Therefore, we cannot drop it.
Suppose I have a dataset with 1000 observations. Now I train the model
on the complete dataset in one go. Another way I did it, I divided my
dataset in 80% and 20% and trained my model first at 80% and then on
20% data. Is it same or different?
It's hard to say: is it good or not. Generally, if your data (splits) are taken from the same distribution - you can perform additional training. However, not all model types are good for it. I advice you to run some kind of cross-validation with 80/20 splitting and error measurement checking before additional training and after.
Basically, if I train my already
trained model on new data, what does it mean?
If you take the datasets from the same distribution: you perform additional learning what theoretically should have positive influence on your model.
Imagine I have a dataset of some ship passengers, where only first-class passengers were given cabin. There is a column that holds cabin numbers (categorical) but very few observations have these cabin numbers. Now I know this column is important so I cannot remove it and because it has many missing values, so most of the algorithms do not work. How to handle imputing of this type of column?
You need clearly understand what do you want to do by imputation. If only first-class has values, how you can perform imputation for the second- or third-class? What do you need to find? Deck? Cabin number? Do you want to find new values or impute by already existing values?
When imputing the validation data, do we impute with same values that were used to impute training data or the imputing values are again calculated from validation data itself?
Very generally, you run imputation algorithm on the whole data you have (without target column).
How to impute data in the form of a string like a Ticket number (like A-123). The column is important because the 1st alphabet tells the class of passenger. Therefore, we cannot drop it.
If you have the finite number of cases, you just need to impute values as strings. If not, perform feature engineering: try to predict letter, number, first digit of the number, len(number) and so on.
My problem is
I want to build a one class SVM classifier to identify the nouns/aspects from test file.
The training file has list of nouns. The test has list of words.
This is what I've done:
I'm using Weka GUI and I've trained a one class SVM(libSVM) to get a model.
Now the model classifies those words in test file that the classifier identified as nouns in the generated model. Others are classified as outliers. ( So it is just working like a look up. If it is identified as noun in trained model, then 'yes' else 'no')
So how to build a proper classifier?. ( I meant the format of input and what it information it should contain?)
Note:
I don't give negative examples in training file since it is one class.
My input format is arff
Format of training file is a set of word,yes
Format of test file is a set of word,?
EDIT
My test file will have noun phrases. So my classifier's job is to get the nouns words from candidates in test file.
Your data is not formatted appropriately for this problem.
If you put
word,class
pairs into a SVM, what you are really putting into the SVM are sparse vectors that consist of a single one, corresponding to your word, i.e.
0,0,0,0,0,...,0,0,1,0,0,0,...,0,0,0,0,yes
Anything a classifier can do on such data is overfit and memorize. On unknown new words, the result will be useless.
If you want your classifier to be able to abstract and generalize, then you need to carefully extract features from your words.
Possible features would be n-grams. So the word "example" could be represented as
exa:1, xam:1, amp:1, mpl:1, ple:1
Now your classifier/SVM could learn that having the n-gram "ple" is typical for nouns.
Results will likely be better if you add "beginning-of-word" and "end-of-word" symbol,
^ex:1, exa:1, xam:1, amp:1, mpl:1, ple:1, le$:1
and maybe also use more than one n-gram length, e.g.
^ex:1, ^exa:1, exa:1, exam: 1, xam:1, xamp:1, amp:1, ampl:1, mpl:1, mple1:1, ple:1, ple$.1, le$:1
but of course, the more you add the larger your data set and search space grows, which again may lead to overfitting.
I have a training set where the input vectors are speed, acceleration and turn angle change. Output is a crisp class- an activity state from the given set {rest, walk, run}. e.g- say for input vectors [3.1 1.2 2]-->run ; [2.1 1 1]-->walk and so on.
I am using weka to develop a Neural Network model. The output I am defining as crisp ones (or rather qualitative ones in words- categorical values). After training the model, the model can fairly classify on test data.
I was wondering how the internal process (mapping function) is taking place? Is the qualitative output states are getting some nominal value inside the model and after processing it is again getting converted to the categorical data? because a NN model cannot map float input values to a categorical data through hidden neurons, so what is actually happening, although the model is working fine.
If the model converts the categorical outputs into nominal ones and then start processing then on what basis it converts the categorical value into some arbitrary numerical values?
Yes, categorical values are usually being converted to numbers, and the networks learn to associate input data with these numbers. However these numbers are often further encoded, not to use only single output neuron. The most common way to do it, for unordered labels, is to add dummy output neurons dedicated to each category and use 1-of-C encoding, with 0.1 and 0.9 as target values. Output is interpreted using the Winner-take-all paradigm.
Using only one neuron and encoding categories with different numbers for unordered labels often leads to problems - as the network will treat middle categories as "averages" of the boundary categories. This however may sometimes be desired, if you have ordered categorical data.
You can find very good explanation of this issue in this part of the online Neural Network FAQ.
The neural net's computations all take place on continuous values. To do multiclass classification with discrete output, its final layer produces a vector of such values, one for each class. To make a discrete class prediction, take the index of the maximum element in that vector.
So if the final layer in a classification network for four classes predicts [0 -1 2 1], then the third element of the vector is the largest and the third class is selected. Often, these values are also constrained to form a probability distribution by means of a softmax activation function.