Getting byte type object in prediction - machine-learning

I am getting Byte type value returned from predict function on a data.
from sagemaker.predictor import Predictor
from sagemaker.serializers import CSVSerializer
from sagemaker.deserializers import JSONDeserializer
predictor1 = Predictor(endpoint_name=predictor.endpoint_name, serializer=CSVSerializer(), deserializers = CSVDeserializer())
result = predictor1.predict(data)
print(type(result))
print(result)
<class 'bytes'>
b'{"probabilities": [[0.9999768137931824, 2.3188162231235765e-05]]}'

The way you're using the predict method, the output is passed in bytes. But there is no sagemaker function you have to use to solve the problem.
Just use decode() and eval() to retrieve the parameters correctly:
decoded_string = result.decode('utf-8')
json_from_string = eval(decoded_string)
print(json_from_string['probabilities'][0])
output will be:
[0.9999768137931824, 2.3188162231235765e-05]

Related

How to handle alphanumeric values in machine learning

I am trying to the find the best algorithm for my claims data. The claims data include some diagnosis code which are alphanumeric like 'EA43454' . when i run the below code to evaluate the models
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
scoring = 'accuracy'
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=None)
cv_results = model_selection.cross_val_score(model, X, y, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
i get the error
ValueError: could not convert string to float: 'U0003'
How to handle these alphanumeric values?
You need to convert your strings to an indicator variable (dummy variables). Each value of the string variable has to be associated with a number so that the models can train on that data.
Scikit-learn has several preprocessors to help you with this such as OneHotEncoder. You can also use pandas.get_dummies, but using sklearn's own classes is more composable - for example, you can use them as part of a pipeline.
import pandas as pd
import numpy as np
from sklearn.preprocessing import OneHotEncoder
rng = np.random.default_rng()
animals = pd.DataFrame({"animal": rng.choice(["cat", "dog"], size=10),
"age": rng.integers(1, 20, size=10)})
animals_ohe = OneHotEncoder().fit_transform(animals.drop(columns=["age"]))

Error with bagImpute and predict from caret package

I have the following when error when trying to use the preProcess function from the caret package. The predict function works for knn and median imputation, but gives an error for bagging. How should I edit my call to the predict function.
Reproducible example:
data = iris
set.seed(1)
data = as.data.frame(lapply(data, function(cc) cc[ sample(c(TRUE, NA), prob = c(0.8, 0.2), size = length(cc), replace = TRUE) ]))
preprocess_values = preProcess(data, method = c("bagImpute"), verbose = TRUE)
data_new = predict(preprocess_values, data)
This gives the following error:
> data_new = predict(preprocess_values, data)
Error in UseMethod("predict") :
no applicable method for 'predict' applied to an object of class "NULL"
The preprocessing/imputation functions in caret work only for numerical variables.
As stated in the help of preProcess
x a matrix or data frame. Non-numeric predictors are allowed but will be ignored.
You most likely found a bug in the part that should ignore the non numerical variables which throws an uninformative error instead of ignoring them.
If you remove the factor variable the imputation works
library(caret)
df <- iris
set.seed(1)
df <- as.data.frame(lapply(data, function(cc) cc[ sample(c(TRUE, NA), prob = c(0.8, 0.2), size = length(cc), replace = TRUE) ]))
df <- df[,-5] #remove factor variable
preprocess_values <- preProcess(df, method = c("bagImpute"), verbose = TRUE)
data_new <- predict(preprocess_values, df)
The last line of code works but results in a bunch of warnings:
In cprob[tindx] + pred :
longer object length is not a multiple of shorter object length
These warnings are not from caret but from the internal call to ipred::bagging which is called internally by caret::preProcess. The cause for these errors are instances in the data where there are 3 NA values in a row, when they are removed
df <- df[rowSums(sapply(df, is.na)) != 3,]
preprocess_values <- preProcess(df, method = c("bagImpute"), verbose = TRUE)
data_new <- predict(preprocess_values, df)
the warnings disappear.
You should check out recipes, and specifically step_bagimpute, to overcome the above mentioned limitations.

Keras predict function throws AttributeError: 'tuple' object has no attribute 'ndim'

I am following this link to train rnn classifier on small dataset to check if the code is working.
While running command
rnn.predict(data_test, 'answer.csv'), throws exception:
AttributeError: 'tuple' object has no attribute 'ndim'
Here is the predict function
def predict(self, data_test, answer_filename):
word_matrix, char_matrix, additional_features_matrix = data_test
print("Test example: ")
print(word_matrix[0])
print(char_matrix[0])
print(additional_features_matrix[0])
preds = self.model.predict([word_matrix, char_matrix, additional_features_matrix],
batch_size=self.batch_size, verbose=1)
index_to_author = { 0: "EAP", 1: "HPL", 2: "MWS" }
submission = pd.DataFrame({"id": test["id"], index_to_author[0]: preds[:, 0],
index_to_author[1]: preds[:, 1], index_to_author[2]: preds[:, 2]})
submission.to_csv(answer_filename, index=False)
The word_matrix, char_matrix, additional_features_matrix are of variable length. In my case, the dimensions are (80,), (80, 30) and (1153, 15) respectively. I google it and found that I should add padding to the input numpy array.
But, the code in the link worked fine. I am not able to understand what am I doing wrong. Can somebody help me with this?
I found out my own mistake. If you follow this link then you will find the following line of code:
_, additional_features_matrix_test = collect_additional_features(x.iloc[idx_train], x_test)
The function collect_additional_features returns a tuple of two ndarrays. My mistake was that I missed _ and hence the line of code became:
additional_features_matrix_test = collect_additional_features(x.iloc[idx_train], x_test)
Thus the additional_features_matrix_test became a tuple instead of an ndarray and while passing the additional_features_matrix_test to the LSTM it threw the error AttributeError: 'tuple' object has no attribute 'ndim'

how to convert pandas str.split call to to dask

I have a dask data frame where the index is a string which looks like this:
12/09/2016 00:00;32.0046;-106.259
12/09/2016 00:00;32.0201;-108.838
12/09/2016 00:00;32.0224;-106.004
(its basically a string encoding the datetime;latitude;longitude of the row)
I'd like to split that while still in the dask context to individual columns representing each of the fields.
I can do that with a pandas dataframe as:
df['date'], df['Lat'], df['Lon'] = df.index.str.split(';', 2).str
But that doesn't work in dask for several of the attempts I've tried. If I directly substitute the df for a dask df I get the error:
'Index' object has no attribute 'str'
If I use the column name instead of index as:
forecastDf['date'], forecastDf['Lat'], forecastDf['Lon'] = forecastDf['dateLocation'].str.split(';', 2).str
I get the error:
TypeError: 'StringAccessor' object is not iterable
Here is an runnable example of this working in Pandas
import pandas as pd
df = pd.DataFrame()
df['dateLocation'] = ['12/09/2016 00:00;32.0046;-106.259','12/09/2016 00:00;32.0201;-108.838','12/09/2016 00:00;32.0224;-106.004']
df = df.set_index('dateLocation')
df['date'], df['Lat'], df['Lon'] = df.index.str.split(';', 2).str
df.head()
Here is the error I get if I directly convert that to dask
import dask.dataframe as dd
dd = dd.from_pandas(df, npartitions=1)
dd['date'], dd['Lat'], dd['Lon'] = dd.index.str.split(';', 2).str
>>TypeError: 'StringAccessor' object is not iterable
forecastDf['date'] = forecastDf['dateLocation'].str.partition(';')[0]
forecastDf['Lat'] = forecastDf['dateLocation'].str.partition(';')[2]
forecastDf['Lon'] = forecastDf['dateLocation'].str.partition(';')[4]
Let me know if this works for you!
First make sure the column is string dtype
forecastDD['dateLocation'] = forecastDD['dateLocation'].astype('str')
Then you can use this to split in dask
splitColumns = client.persist(forecastDD['dateLocation'].str.split(';',2))
You can then index the columns in the new dataframe splitColumns and add them back to the original data frame.
forecastDD = forecastDD.assign(Lat=splitColumns.apply(lambda x: x[0], meta=('Lat', 'f8')), Lon=splitColumns.apply(lambda x: x[1], meta=('Lat', 'f8')), date=splitColumns.apply(lambda x: x[2], meta=('Lat', np.dtype(str))))
Unfortunately I couldn't figure out how to do it without calling compute and creating the temp dataframe.

Polynomial regression in spark/ or external packages for spark

After investing good amount of searching on net for this topic, I am ending up here if I can get some pointer . please read further
After analyzing Spark 2.0 I concluded polynomial regression is not possible with spark (spark alone), so is there some extension to spark which can be used for polynomial regression?
- Rspark it could be done (but looking for better alternative)
- RFormula in spark does prediction but coefficients are not available (which is my main requirement as I primarily interested in coefficient values)
Polynomial regression is just another case of a linear regression (as in Polynomial regression is linear regression and Polynomial regression). As Spark has a method for linear regression, you can call that method changing the inputs in such a way that the new inputs are the ones suited to polynomial regression. For instance, if you only have one independent variable x, and you want to do quadratic regression, you have to change your independent input matrix for [x x^2].
I would like to add some information to #Mehdi Lamrani’s answer :
If you want to do a polynomial linear regression in SparkML, you may use the class PolynomialExpansion.
For information check the class in the SparkML Doc
or in the Spark API Doc
Here is an implementation example:
Let's assume we have a train and test datasets, stocked in two csv files, with headers containing the neames of the columns (features, label).
Each data set contains three features named f1,f2,f3, each of type Double (this is the X matrix), as well as a label feature (the Y vector) named mylabel.
For this code I used Spark+Scala:
Scala version : 2.12.8
Spark version 2.4.0.
We assume that SparkML library was already downloaded in build.sbt.
First of all, import librairies :
import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.mllib.evaluation.RegressionMetrics
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.functions.udf
import org.apache.spark.{SparkConf, SparkContext}
Create Spark Session and Spark Context :
val ss = org.apache.spark.sql
.SparkSession.builder()
.master("local")
.appName("Read CSV")
.enableHiveSupport()
.getOrCreate()
val conf = new SparkConf().setAppName("test").setMaster("local[*]")
val sc = new SparkContext(conf)
Instantiate the variables you are going to use :
val f_train:String = "path/to/your/train_file.csv"
val f_test:String = "path/to/your/test_file.csv"
val degree:Int = 3 // Set the degree of your choice
val maxIter:Int = 10 // Set the max number of iterations
val lambda:Double = 0.0 // Set your lambda
val alpha:Double = 0.3 // Set the learning rate
First of all, let's create first several udf-s, which will be used for the data reading and pre-processing.
The arguments' types of the udf toFeatures will be Vector followed by the type of the arguments of the features: (Double,Double,Double)
val toFeatures = udf[Vector, Double, Double, Double] {
(a,b,c) => Vectors.dense(a,b,c)
}
val encodeIntToDouble = udf[Double, Int](_.toDouble)
Now let's create a function which extracts data from CSV and creates, new features from the existing ones, using PolynomialExpansion:
def getDataPolynomial(
currentfile:String,
sc:SparkSession,
sco:SparkContext,
degree:Int
):DataFrame =
{
val df_rough:DataFrame = sc.read
.format("csv")
.option("header", "true") //first line in file has headers
.option("mode", "DROPMALFORMED")
.option("inferSchema", value=true)
.load(currentfile)
.toDF("f1", "f2", "f3", "myLabel")
// you may add or not the last line
val df:DataFrame = df_rough
.withColumn("featNormTemp", toFeatures(df_rough("f1"), df_rough("f2"), df_rough("f3")))
.withColumn("label", Tools.encodeIntToDouble(df_rough("myLabel")))
val polyExpansion = new PolynomialExpansion()
.setInputCol("featNormTemp")
.setOutputCol("polyFeatures")
.setDegree(degree)
val polyDF:DataFrame=polyExpansion.transform(df.select("featNormTemp"))
val datafixedWithFeatures:DataFrame = polyDF.withColumn("features", polyDF("polyFeatures"))
val datafixedWithFeaturesLabel = datafixedWithFeatures
.join(df,df("featNormTemp") === datafixedWithFeatures("featNormTemp"))
.select("label", "polyFeatures")
datafixedWithFeaturesLabel
}
Now, run the function both for the train and test datasets, using the chosen degree for the Polynomial expansion.
val X:DataFrame = getDataPolynomial(f_train,ss,sc,degree)
val X_test:DataFrame = getDataPolynomial(f_test,ss,sc,degree)
Run the algorithm in order to get a model of linear regression, using a pipeline :
val assembler = new VectorAssembler()
.setInputCols(Array("polyFeatures"))
.setOutputCol("features2")
val lr = new LinearRegression()
.setMaxIter(maxIter)
.setRegParam(lambda)
.setElasticNetParam(alpha)
.setFeaturesCol("features2")
.setLabelCol("label")
// Fit the model:
val pipeline:Pipeline = new Pipeline().setStages(Array(assembler,lr))
val lrModel:PipelineModel = pipeline.fit(X)
// Get prediction on the test set :
val result:DataFrame = lrModel.transform(X_test)
Finally, evaluate the result using mean squared error measure :
def leastSquaresError(result:DataFrame):Double = {
val rm:RegressionMetrics = new RegressionMetrics(
result
.select("label","prediction")
.rdd
.map(x => (x(0).asInstanceOf[Double], x(1).asInstanceOf[Double])))
Math.sqrt(rm.meanSquaredError)
}
val error:Double = leastSquaresError(result)
println("Error : "+error)
I hope this might be useful !

Resources