Resources for Promotion/Demotion Strategies for ML Item Recommendation Systems? - machine-learning

We are looking to design a system where specific items or categories of items can be boosted/promoted up or relegated/demoted down the recommendation order.
What are the common strategies or standards to do such?
A cursory google search did not yield anything super-useful.
Though this seems like a common problem in e-commerce.
We are looking into Amazon Personalize on AWS as one option.
What is this area called in literature, is there standard name used in the field/industry?
Are there introductory or survey papers?

Related

Recommender System: Is it content-based filtering?

Can someone please help me clarify.
I am currently using collaborative filtering (ALS) which returns a recommendation list with scores corresponding to the recommended items. In addition to this, I am boosting the scores (+0.1) if the items contain a tag that corresponds with what the user has specified they prefer such as "romantic movies". To me, this is considered a hybrid collaborative approach since it's boosting the Collaborative filtering results with content-based filtering (Please correct me if I am wrong).
Now, what if I did the same approach without doing Collaborative filtering? would it be considered Content-based Filtering? since I will be still recommending dishes based on the content and attributes of each dish corresponding to what the user has specified they like (such as "romantic movies").
The reason why I'm confused is because I've seen content-based filtering where they apply an algorithm such as Naive Bayes etc, and this approach would be similar to a simple search of the items (on the contents).
Not sure you can do what you suggest because you have no score to boost without CF.
You are indeed using a hybrid, much the same as the Universal Recommender. To do purely content-based recommendations you have to implement two methods
Personalized recommendations: here you have to look at the content of items the user preferred and find items that have similar content. This can be done by using something like the Mahout spark-rowsimilarity job to create a model of item: list-of-similar-items then indexing the results with a search engine and using the user's preferred item ids as the query. This is being added to the Universal Recommender.
"People who liked this also liked these": these are items similar to one being viewed, for example, and are the same for all users. They are not personalized and so are useful even for anonymous users with no history. This can be done with the same indexed ids as above but using the items similar to the one being viewed as the query. One might think to use only the similar items themselves but by using them as a query you can put the categorical boost in the search engine query and have boosted items returned. This already works in the Universal Recommender but the similar items are not in the model yet.
That said mixing content with collaborative-filtering will almost surely give better results since CF works better when the data is available. The only time to rely on content-based recommendations is when your catalog is of one-off items, which never get enough CF interactions or you have rich content, which has a short lifetime like breaking news.
BTW anyone who wants to help add the pure content-based part to the Universal Recommender can contact the new maintainers of it at ActionML.com

Mahout Recommender - questions to setup user preference

I'm looking for some advice / guidance --
I'm working on a recommendation engine / personnel assistance app, using Mahout as the framework -
What I want to do is for new users of the app to begin by answering 5 questions and use the answers from the questions to effect the recommendation -- pretty much feeding the answers as a user-preference
I'm just not sure how to incorporate this into my code, I'm not even sure where to begin looking - I've been Googling but none of the search results really address this...
Any suggestions / advice / guidance will be greatly appreciated
Thanks
I did just that with the new Spark Itemsimilarity implementation about a year ago. You'll need a search engine for the recommendations query because Mahout doesn't have a server. I'd suggest using the new "Universal Recommender" engine template with PredicitonIO. It uses Mahout to calculate the model and Elasticsearch to serve it.
https://templates.prediction.io/PredictionIO/template-scala-parallel-universal-recommendation
PreditionIO is a framework of integrated components that provide an event server (for event storage) integration with Hadoop/HDFS, Spark, Hbase, and a REST or SDK API. All you do is install it and get the template as a plugin engine. This will provide pretty advanced recommendations queries with multiple event ingestion, a hybrid content-based method to tune results, and several methods of using popular items for backfill when no other recommendations can be made. It also uses realtime user actions for recommendations.
This last bit is super important if you want to have your users go through some training. This way they will see the benefit of training in realtime. Check this site, where I did exactly what you are talking about: https://guide.finderbots.com Notice the "Trainer". It presents you with movies and asks for thumbs up or down for as many as you care to do, then when you ask for recommendations they will be based on the realtime preferences of the user. You need to create an account first so we have a user-id.
The way I created the list for the trainer is by cluster popular items. By clustering I mean based on the users that preferred the items. Clustering produces items that are differentiated because they belong to different clusters, which means different user-sets tended to like them, and the popular ones are more likely to be known by users when they go through training. These are good things to have in a trainer.

Is a food ordering menu a good use case for Neo4j

I have been trying to learn different NoSQL databases so I decided that I want to build a food ordering menu where you can order a burger for example. I want the menu to be able to ask different questions depending on the item being ordered. So for a burger it should ask questions like what kind of bread you want. Should you add extra cheese? Should the patty be hot, mild, extra hot etc. If you order a different item eg a pizza you would have different options from a burger eg what kind of crust you want, what kind of topping to use etc. Depending on what is being ordered, would you want a side. An item on the menu could either be a main item and could also be a side.
My question is is Neo4j a good database to model this or is there a better database I should be looking at.
Regards
I think it's a good choice, because it can model the different aspects flexibly and allow you to make recommendations based on the inputs that users provided.
Here is a nice demo with a restaurant selection in action:
http://www.popotojs.com/
I think Neo4j is good to go with an idea like this. What is nice for me the visualization part which increase the usability of any platform. If you can embed your database with a visualization platform, that would be even better. When you think from social web perspective, you can even recommend food, siders, etc. based on the other customers choices. I suggest you to read the Graph Databases book to have a broader understanding for your purposes.
For visualization, there are many solutions. I suggest you to have a look popoto.js example, which can give you a perspective how your menu can look like.

Using machine learning to de-duplicate data

I have the following problem and was thinking I could use machine learning but I'm not completely certain it will work for my use case.
I have a data set of around a hundred million records containing customer data including names, addresses, emails, phones, etc and would like to find a way to clean this customer data and identify possible duplicates in the data set.
Most of the data has been manually entered using an external system with no validation so a lot of our customers have ended up with more than one profile in our DB, sometimes with different data in each record.
For Instance We might have 5 different entries for a customer John Doe, each with different contact details.
We also have the case where multiple records that represent different customers match on key fields like email. For instance when a customer doesn't have an email address but the data entry system requires it our consultants will use a random email address, resulting in many different customer profiles using the same email address, same applies for phones, addresses etc.
All of our data is indexed in Elasticsearch and stored in a SQL Server Database. My first thought was to use Mahout as a machine learning platform (since this is a Java shop) and maybe use H-base to store our data (just because it fits with the Hadoop Ecosystem, not sure if it will be of any real value), but the more I read about it the more confused I am as to how it would work in my case, for starters I'm not sure what kind of algorithm I could use since I'm not sure where this problem falls into, can I use a Clustering algorithm or a Classification algorithm? and of course certain rules will have to be used as to what constitutes a profile's uniqueness, i.e what fields.
The idea is to have this deployed initially as a Customer Profile de-duplicator service of sorts that our data entry systems can use to validate and detect possible duplicates when entering a new customer profile and in the future perhaps develop this into an analytics platform to gather insight about our customers.
Any feedback will be greatly appreciated :)
Thanks.
There has actually been a lot of research on this, and people have used many different kinds of machine learning algorithms for this. I've personally tried genetic programming, which worked reasonably well, but personally I still prefer to tune matching manually.
I have a few references for research papers on this subject. StackOverflow doesn't want too many links, but here is bibliograpic info that should be sufficient using Google:
Unsupervised Learning of Link Discovery Configuration, Andriy Nikolov, Mathieu d’Aquin, Enrico Motta
A Machine Learning Approach for Instance Matching Based on Similarity Metrics, Shu Rong1, Xing Niu1, Evan Wei Xiang2, Haofen Wang1, Qiang Yang2, and Yong Yu1
Learning Blocking Schemes for Record Linkage, Matthew Michelson and Craig A. Knoblock
Learning Linkage Rules using Genetic Programming, Robert Isele and Christian Bizer
That's all research, though. If you're looking for a practical solution to your problem I've built an open-source engine for this type of deduplication, called Duke. It indexes the data with Lucene, and then searches for matches before doing more detailed comparison. It requires manual setup, although there is a script that can use genetic programming (see link above) to create a setup for you. There's also a guy who wants to make an ElasticSearch plugin for Duke (see thread), but nothing's done so far.
Anyway, that's the approach I'd take in your case.
Just came across similar problem so did a bit Google. Find a library called "Dedupe Python Library"
https://dedupe.io/developers/library/en/latest/
The document for this library have detail of common problems and solutions when de-dupe entries as well as papers in de-dupe field. So even if you are not using it, still good to read the document.

How to categorize urls using machine learning?

I'm indexing websites' content and I want to implement some categorization based solely on the urls.
I would like to tell appart content view pages from navigation pages.
By 'content view pages' I mean webpages where one can typically see the details of a product or a written article.
By 'navigation pages' I mean pages that (typically) consist of lists of links to content pages or to other more specific list pages.
Although some sites use a site wide key system to map their content, most of the sites do it bit by bit and scope their key mapping, so this should be possible.
In practice, what I want to do is take the list of urls from a site and group them by similarity. I believe this can be done with machine learning, but I have no idea how.
Machine learning appear to be a broad topic, what should I start reading about in particular?
Which concepts, which algoritms, which tools?
If you want to discover these groups automatically, I suggest you find yourself an implementation of a clustering algorithm (K-Means is probably the most popular, you don't say what language you want to do this in). You know there are two categories, so something that allows you to specify the number of categories a priori will make the problem easier.
After that, define a bunch of features for your webpages, and run them through k-means to see what kind of groups are produced. Tweak the features you use til you get something that looks satisfactory. If you have access to the webpages themselves, I'd strongly recommend using features defined over the whole page, rather than just the URLs.
You firstly need to collect a dataset of navigation / content pages and label them. After that its quite straight forward.
What language will you be using? I'd suggest you try Weka which is a java based tool in which you can simply press a button and get back performance measures of 50 odd algorithms from. After that you will know which is the most accurate and can deploy that.
I feel like you are trying to classify the Authority and Hub in a HITS algorithm.
Hub is your navigation page;
Authority is your content view page.
By doing a link analysis of every web pages, you should be able to find out the type of page by performing HITS on all the webpages in a domain. As shown in below graphs, the left graph shows the link relation between webpages. The right graph shows the scoring with respective to hub/authority after running HITS. HITS does not need any label to start. The updating rule is simple: basically just one update for authority score and another update for hub score.
Here is a tutorial discussing pagerank/HITS where I borrowed the above two graphs.
Here is an extended version of HITS to combine HITS and information retrieval methods (TF-IDF, vector space model, etc). This looks much more promising but certainly it needs more work. I suggest you start with naive HITS and see how good it is. On top of that, try some techniques mentioned in BHITS to improve your performance.

Resources