How to deal with dataset of different features? - machine-learning

I am working to create an MLP model on a CEA Classification Dataset (Binary Classification). Each sample contains different 4 features, such as resistance and other values, each in its own range (resistance in hundreds, another in micros, etc.). I am still new to machine learning and this is the first real model to build. How can I deal with such data? I have tried feeding each sample to the neural network with a sigmoid activation function, but I am not getting accurate results. My assumption to deal with this kind of data is to scale it? If so, what are some resources which are useful to look at, since I do not quite understand when is scaling required.

Scaling your data can be an important step in building a machine-learning model, especially when working with neural networks. Scaling can help to ensure that all of the features in your dataset are on a similar scale, which can make it easier for the model to learn.
There are a few different ways to scale your data, such as normalization and standardization. Normalization is the process of scaling the data so that it has a minimum value of 0 and a maximum value of 1. Standardization is the process of scaling the data so that it has a mean of 0 and a standard deviation of 1.
When working with your CEA Classification dataset, it might be helpful to try both normalization and standardization to see which one works better for your specific dataset. You can use scikit-learn library's preprocessing functions like MinMaxScaler() and StandardScaler() for normalization and standardization respectively.
Additionally, it might be helpful to try different activation functions, such as ReLU or LeakyReLU, to see if they lead to more accurate results. Also, you can try adding more layers and neurons in your neural network to see if it improves the performance.
It's also important to remember that feature engineering, which includes the process of selecting the most important features, can be more important than scaling.

Related

Suggestions needed about the generalization of a regression neural network

I've trained a deep neural network of a few hundreds of features which analyzes geo data of a city, and calculate a score per sample based on the profile between the observer and the target location. That is, the longer the distance between the observer and target, the more features I will have for this sample. When I train my NN with samples from part of a city and test with other parts of the same city, the NN works very well, but when I apply my NN to other cities, the NN starts to give high standard deviation of errors, especially on cases which the samples of the city I'm applying the NN to generally has more features than samples of the city I used to train this NN. To deal with that, I've appended 10% of empty samples in training which was able to reduce the errors by half, but the remaining errors are still too large compare to the solutions calculated by hand. May I have some advise of generalize a regression neural network? Thanks!
I was going to ask for more examples of your data, and your network, but it wouldn't really matter.
How to improve the generalization of a regression neural network?
You can use exactly the same things you would use for a classification neural network. The only difference is what it does with the numbers that are output from the penultimate layer!
I've appended 10% of empty samples in training which was able to reduce the errors by half,
I didn't quite understand what that meant (so I'd still be interested if you expanded your question with some more concrete details), but it sounds a bit like using dropout. In Keras you append a Dropout() layer between your other layers:
...
model.append(Dense(...))
model.append(Dropout(0.2))
model.append(Dense(...))
...
0.2 means 20% dropout, which is a nice starting point: you could experiment with values up to about 0.5.
You could read the original paper or this article seems to be a good introduction with keras examples.
The other generic technique is to add some L1 and/or L2 regularization, here is the manual entry.
I typically use a grid search to experiment with each of these, e.g. trying each of 0, 1e-6, 1e-5 for each of L1 and L2, and each of 0, 0.2, 0.4 (usually using the same value between all layers, for simplicity) for dropout. (If 1e-5 is best, I might also experiment with 5e-4 and 1e-4.)
But, remember that even better than the above are more training data. Also consider using domain knowledge to add more data, or more features.

Machine Learning: Weighting Training Points by Importance

I have a set of labeled training data, and I am training a ML algorithm to predict the label. However, some of my data points are more important than others. Or, analogously, these points have less uncertainty than the others.
Is there a general method to include an importance-representing weight to each training point in the model? Are there instead some specific models which are capable of this while others are not?
I can imagine duplicating these points (and perhaps smearing their features slightly to avoid exact duplicates), or downsampling the less important points. Is there a more elegant way to approach this problem?
Scikit-learn allows you to pass an array of sample weights while fitting the model. Vowpal Wabbit (an online ML library) also has this option.

How to continue to train SVM based on the previous model

We all know that the objective function of SVM is iteratively trained. In order to continue training, at least we can store all the variables used in the iterations if we want to continue on the same training dataset.
While, if we want to train on a slightly different dataset, what should we do to make full use of the previously trained model? Or does this kind of thought make sense? I think it is quite reasonable if we train a K-means model. But I am not sure if it still makes sense for the SVM problem.
There are some literature on this topic:
alpha-seeding, in which the training data is divided into chunks. After you train a SVM on the ith chunk, you take those and use them to train your SVM with the (i+1)th chunk.
Incremental SVM serves as an online learning in which you update a classifier with new examples rather than retrain the entire data set.
SVM heavy package with online SVM training as well.
What you are describing is what an online learning algorithm does and unfortunately the classic definition for SVM is done in a batch fashion.
However, there are several solvers for SVM that produces quasy optimal hypothesis to the underneath optimization problem in an online learning way. In particular my favourite is Pegasos-SVM which can find a good near optimal solution in linear time:
http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf
In general this doesn't make sense. SVM training is an optimization process with regard to every training set vector. Each training vector has an associated coefficient, which as a result is either 0 (irrelevant) or > 0 (support vector). Adding another training vector imposes another, different, optimization problem.
The only way to reuse information from previous training I can think of is to choose support vectors from the previous training and add them to the new training set. I'm not sure, but this probably will negatively affect generalization - VC dimension of an SVM is related to the number of support vectors, so adding previous support vectors to the new dataset is likely to increase the support vector count.
Apparently, there are more possibilities, as noted in lennon310's answer.

How To Fight Randomness Caused By KMeans Clustering

I'm developing an algorithm to classify different types of dogs based off of image data. The steps of the algorithm are:
Go through all training images, detect image features (ie SURF), and extract descriptors. Collect all descriptors for all images.
Cluster within the collected image descriptors and find k "words" or centroids within the collection.
Reiterate through all images, extract SURF descriptors, and match the extracted descriptor with the closest "word" found via clustering.
Represent each image as a histogram of the words found in clustering.
Feed these image representations (feature vectors) to a classifier and train...
Now, I have run into a bit of a problem. Finding the "words" within the collection of image descriptors is a very important step. Due to the random nature of clustering, different clusters are found each time I run my program. The unfortunate result is that sometimes the accuracy of my classifier will be very good, and other times, very bad. I have chalked this up to the clustering algorithm finding "good" words sometimes, and "bad" words other times.
Does anyone know how I can hedge against the clustering algorithm from finding "bad" words? Currently I just cluster several times and take the mean accuracy of my classifier, but there must be a better way.
Thanks for taking time to read through this, and thank you for your help!
EDIT:
I am not using KMeans for classification; I am using a Support Vector Machine for classification. I am using KMeans for finding image descriptor "words", and then using these words to create histograms which describe each image. These histograms serve as feature vectors that are fed to the Support Vector Machine for classification.
There are many possible ways of making clustering repeatable:
The most basic method of dealing with k-means randomness is simply running it multiple times and selecting the best one (the one that minimizes the inner cluster distances/maximizes the between clusters distance).
One can use some fixed initialization for your data instead of randomization. There are many heuristics for starting the k-means. Or at least minimize the variance by using algorithms like k-means++.
Use modification of k-means which guarantees global minimum of regularized function, ie. convex k-means
Use different clustering method, which is deterministic, ie. Data Nets
I would offer two possible suggestions, in addition to those provided.
K-means optimises an objective related to the distance between cluster points and their centroids. You care about classification accuracy. Depending on the computational cost, a simple brute-force approach is to induce multiple clusterings on a subset of your training data, and evaluate the performance of each on some held-out development set for the task you care about. Then use the highest performing variant as the final model. I don't like the use of non-random initialisation because this is only a solution to avoid the randomness, not find the true global minimum of the objective, and your chosen initialisation may be useless and just produce consistently bad classifiers.
The other approach, which is much harder, is to view the k-means step as a dimensionality reduction to enable classification, and incorporate this into the classifier directly. If you use a deep neural net, the layer(s) closest to the input are essentially dimensionality reducers in the same way as the k-means clustering you induce: the difference is their weights are set wrt the error of the net on the classification problem, rather than some unrelated intermediate step. The downside is that this is much closer to a current research problem: training deep nets is hard. You could start with a standard one-hidden-layer architecture (with binary activations on the hidden layer, and using cross-entropy loss on the output layer with outputs coded as one-of-n categories), and attempt to add layers incrementally, but as far as I'm aware standard training algorithms start to behave poorly beyond the single hidden layer, so you'd need to investigate layer-wise training to initialise, or some of the Hessian-Free stuff coming out of Geoff Hinton's group in Toronto.
That is actually an important problem with the BofW approach, and you should share this prominently. SIFT data may actually not have k-means clusters at all. However, due to the nature of the algorithm, k-means will always produce k clusters. One of the things to test with k-means is to validate that the results are stable. If you get a completely different result each time, they are not much better than random.
Nevertheless, if you just want to get some working results, you can just fix the dictionary once and choose one that is working well.
Or you might look into more advanced clustering (in particular one that is more robust wrt. noise!)

How to approach machine learning problems with high dimensional input space?

How should I approach a situtation when I try to apply some ML algorithm (classification, to be more specific, SVM in particular) over some high dimensional input, and the results I get are not quite satisfactory?
1, 2 or 3 dimensional data can be visualized, along with the algorithm's results, so you can get the hang of what's going on, and have some idea how to aproach the problem. Once the data is over 3 dimensions, other than intuitively playing around with the parameters I am not really sure how to attack it?
What do you do to the data? My answer: nothing. SVMs are designed to handle high-dimensional data. I'm working on a research problem right now that involves supervised classification using SVMs. Along with finding sources on the Internet, I did my own experiments on the impact of dimensionality reduction prior to classification. Preprocessing the features using PCA/LDA did not significantly increase classification accuracy of the SVM.
To me, this totally makes sense from the way SVMs work. Let x be an m-dimensional feature vector. Let y = Ax where y is in R^n and x is in R^m for n < m, i.e., y is x projected onto a space of lower dimension. If the classes Y1 and Y2 are linearly separable in R^n, then the corresponding classes X1 and X2 are linearly separable in R^m. Therefore, the original subspaces should be "at least" as separable as their projections onto lower dimensions, i.e., PCA should not help, in theory.
Here is one discussion that debates the use of PCA before SVM: link
What you can do is change your SVM parameters. For example, with libsvm link, the parameters C and gamma are crucially important to classification success. The libsvm faq, particularly this entry link, contains more helpful tips. Among them:
Scale your features before classification.
Try to obtain balanced classes. If impossible, then penalize one class more than the other. See more references on SVM imbalance.
Check the SVM parameters. Try many combinations to arrive at the best one.
Use the RBF kernel first. It almost always works best (computationally speaking).
Almost forgot... before testing, cross validate!
EDIT: Let me just add this "data point." I recently did another large-scale experiment using the SVM with PCA preprocessing on four exclusive data sets. PCA did not improve the classification results for any choice of reduced dimensionality. The original data with simple diagonal scaling (for each feature, subtract mean and divide by standard deviation) performed better. I'm not making any broad conclusion -- just sharing this one experiment. Maybe on different data, PCA can help.
Some suggestions:
Project data (just for visualization) to a lower-dimensional space (using PCA or MDS or whatever makes sense for your data)
Try to understand why learning fails. Do you think it overfits? Do you think you have enough data? Is it possible there isn't enough information in your features to solve the task you are trying to solve? There are ways to answer each of these questions without visualizing the data.
Also, if you tell us what the task is and what your SVM output is, there may be more specific suggestions people could make.
You can try reducing the dimensionality of the problem by PCA or the similar technique. Beware that PCA has two important points. (1) It assumes that the data it is applied to is normally distributed and (2) the resulting data looses its natural meaning (resulting in a blackbox). If you can live with that, try it.
Another option is to try several parameter selection algorithms. Since SVM's were already mentioned here, you might try the approach of Chang and Li (Feature Ranking Using Linear SVM) in which they used linear SVM to pre-select "interesting features" and then used RBF - based SVM on the selected features. If you are familiar with Orange, a python data mining library, you will be able to code this method in less than an hour. Note that this is a greedy approach which, due to its "greediness" might fail in cases where the input variables are highly correlated. In that case, and if you cannot solve this problem with PCA (see above), you might want to go to heuristic methods, which try to select best possible combinations of predictors. The main pitfall of this kind of approaches is the high potential of overfitting. Make sure you have a bunch "virgin" data that was not seen during the entire process of model building. Test your model on that data only once, after you are sure that the model is ready. If you fail, don't use this data once more to validate another model, you will have to find a new data set. Otherwise you won't be sure that you didn't overfit once more.
List of selected papers on parameter selection:
Feature selection for high-dimensional genomic microarray data
Oh, and one more thing about SVM. SVM is a black box. You better figure out what is the mechanism that generate the data and model the mechanism and not the data. On the other hand, if this would be possible, most probably you wouldn't be here asking this question (and I wouldn't be so bitter about overfitting).
List of selected papers on parameter selection
Feature selection for high-dimensional genomic microarray data
Wrappers for feature subset selection
Parameter selection in particle swarm optimization
I worked in the laboratory that developed this Stochastic method to determine, in silico, the drug like character of molecules
I would approach the problem as follows:
What do you mean by "the results I get are not quite satisfactory"?
If the classification rate on the training data is unsatisfactory, it implies that either
You have outliers in your training data (data that is misclassified). In this case you can try algorithms such as RANSAC to deal with it.
Your model(SVM in this case) is not well suited for this problem. This can be diagnozed by trying other models (adaboost etc.) or adding more parameters to your current model.
The representation of the data is not well suited for your classification task. In this case preprocessing the data with feature selection or dimensionality reduction techniques would help
If the classification rate on the test data is unsatisfactory, it implies that your model overfits the data:
Either your model is too complex(too many parameters) and it needs to be constrained further,
Or you trained it on a training set which is too small and you need more data
Of course it may be a mixture of the above elements. These are all "blind" methods to attack the problem. In order to gain more insight into the problem you may use visualization methods by projecting the data into lower dimensions or look for models which are suited better to the problem domain as you understand it (for example if you know the data is normally distributed you can use GMMs to model the data ...)
If I'm not wrong, you are trying to see which parameters to the SVM gives you the best result. Your problem is model/curve fitting.
I worked on a similar problem couple of years ago. There are tons of libraries and algos to do the same. I used Newton-Raphson's algorithm and a variation of genetic algorithm to fit the curve.
Generate/guess/get the result you are hoping for, through real world experiment (or if you are doing simple classification, just do it yourself). Compare this with the output of your SVM. The algos I mentioned earlier reiterates this process till the result of your model(SVM in this case) somewhat matches the expected values (note that this process would take some time based your problem/data size.. it took about 2 months for me on a 140 node beowulf cluster).
If you choose to go with Newton-Raphson's, this might be a good place to start.

Resources