Crypto arbitrage scanner - trading

Could you recommend some crypto arbitrage scanners that can detect arbitrage opportunities on decentralized exchanges (DEXes)? I am looking for a scanner specifically for DEXes, as there are already scanners available for centralized exchanges.
I have found CryptoWizards, a resource that offers the capability to scan for arbitrage opportunities on decentralized exchanges (DEXes), but it is important to consider other options as well.

Related

Which encryption algorithms does AWS Amplify use for iOs apps?

I am publishing my mobile app to the app store, it asks what type of encryption algorithm does my application uses and the options are:
Encryption algorithms that are proprietary or not accepted as standard by international standard bodies (IEEE, IETF, ITU, etc.)
Standard encryption algorithms instead of, or in addition to, using or accessing the encryption within Apple's operating system
Both algorithms mentioned above
None of the algorithms mentioned above
I have a very simple applications which only uses AWS Amplify for authentication to process user interactions , none of the sensitive user information is stored and I don't use any HTTPS requests or anything besides AWS.
I am expecting it to be the second option which is Standard encryption algorithms instead of, or in addition to, using or accessing the encryption within Apple's operating system but I am not sure thus why I am asking this question.

LoRa based network stack alternatives to LoRaWAN

As far as I understand, LoRaWAN is intentionally designed as a Non-IP Stack.
Based on all requirements on LoRaWAN, I can understand the design decisions behind the standard.
But IMHO, there are many other use cases for LoRa (just the physical protocol) which, for example, do
not need to be able to communicate to many gateways at the same time or
don't have low energy consumption requirements.
For these use cases, it would be nice to have other MAC implementations, where one could either have
IP-based stack on top of LoRa or
a lightweight protocol between LoRa-based Sensor and ONE gateway, which handles message transport & security
Sigfox has a similar architecture to LoRaWAN where the device/sensor sends messages directly to a backend-network to which the application needs to connect.
To me, this kind of architecture seems pretty odd, since I loose many advantages of the internet and I am tightly coupled to a backend-network provider (imagine using LTE, you would need to explicitly add your application to the mobile providers backend).
I would like to have a local network (would be okay if it is not IP based) but the devices are connected to a gateway and there I have all flexibility what to do with the sensor data. Using LoRaWAN, this could be achieved by running a network server on the gateway but this would be rather a workaround than a solution I am looking for.
The only reason that I can see now, which makes this network architecture really necessary are that a device can connect to multiple gateways and therefore use cases as, e.g., asset tracking can easily be realized.
Are there any LoRa based solutions where I do not have to deal with setting up network servers? If not, why is that the case?
Edit:
For Linux, I found this project here:
https://de.slideshare.net/chienhungpan/lets-have-an-ieee-802154-over-lora-linux-device-driver-for-iot
And also the LoRa Mesh Project:
https://github.com/meshtastic/Meshtastic-device
LoRaWAN is a Low Power Wide Area Network (LPWAN). This means that the technology allows us building a scaleable wireless IoT network where all devices (things) can be connected even if their transmission power is limited. A LoRaWAN network can easily scale at a size of a country and the low power communication makes it possible to operate the network in an ISM band where both transmission power and bandwidth are limited anyway. Low transmission power also ensures long battery life time for battery powered devices.
Beyond supporting geo-localisation, gateway diversity (meaning that the same radio frame can be received by multiple gateways) significantly increases the resiliency of the network, improves the link budget and lowers the packet error rate.
Traditional IP based based protocols would require much higher average data rate than what LoRa was designed for.
Although you are not obliged to use LoRWAN's MAC layer with the LoRa modulation and you may develop your own proprietary protocols, if low transmission power, long range and long battery life is not important for your use case, it is probably better to use another technology.
The Reticulum Network Stack supports many different physical mediums, including raw LoRa. Mediums like LoRa can be used exclusively, or mixed with any number of other mediums to build as simple or as complex networks as you need, from two devices to billions.
Reticulum is purposefully designed to handle very low data rates and very high latency, while still supporting transport accross much faster network segments, and is very efficient in terms of per-packet and overall protocol overhead.
The source code for the reference implementation, and releases can be found here: https://github.com/markqvist/reticulum

What differ CoAP and LwM2M?

I study about IoT protocol CoAP, MQTT, LwM2M.
I was able to know a little about CoAP and MQTT.
But I do not know what LwM2M is.
I do not know what's different from CoAP.
I just thought that LwM2M is not a protocol with some format but a system structure using CoAP.
Is that correct?
What is LwM2M and How Can I know more information about LwM2M?
Please someone teach me.
LwM2M (specified by OMA) is a is a protocol group largely built on top of CoAP (specified by the IETF).
LwM2M uses a subset of CoAP's capabilities that fit into an architecture of many small devices registering at a large LwM2M server that manages the devices. It prescribes particular path structures (that numbers are used in paths, and what they mean) that represent the LwM2M object model to allow that unified management.
Compared to "plain CoAP", this limits the scope of what devices can do. Devices can still provide other CoAP functionality on the same server that is not covered by LwM2M. Those limitations allow different vendors to build devices that can interoperate with a different management servers, and LwM2M provides additional specifications for easy deployment (e.g. based on smart cards) that are out of scope for CoAP.
The direct answer can be obtained from the official sites:
CoAP "is a specialized web transfer protocol for use with constrained nodes and constrained networks in the Internet of Things.
The protocol is designed for machine-to-machine (M2M) applications such as smart energy and building automation."
LwM2M "is a device management protocol designed for sensor networks and the demands of a machine-to-machine (M2M) environment. With LwM2M, OMA SpecWorks has responded to demand in the market for a common standard for managing lightweight and low power devices on a variety of networks necessary to realize the potential of IoT."
Basically, we can simplify saying that CoAP was designed to communications between constrained IoT devices and it is very similar to HTTP protocol, which facilitates the developers work, while the LwM2M was designed mainly to manage constrained devices remotely, providing service enablement, for instance. Both protocols are commonly used together.
More information you can find in the following links:
- What is LwM2M? A device management solution for low power M2M
- CoAP functionality expected in a LwM2M system

How does AppDynamics (and programs alike) retrieve information

How does AppDynamics and similar problems retrieve data from apps ? I read somewhere here on SO that it is based on bytecode injection, but is there some official or reliable source to this information ?
Data retrieval by APM tools is done in several ways, each one with its pros and cons
Bytecode injection (for both Java and .NET) is one technique, which is somewhat intrusive but allows you to get data from places the application owner (or even 3rd party frameworks) did not intend to allow.
Native function interception is similar to bytecode injection, but allows you to intercept unmanaged code
Application plugins - some applications (e.g. Apache, IIS) give access to monitoring and application information via a well-documented APIs and plugin architecture
Network sniffing allows you to see all the communication to/from the monitored machine
OS specific un/documented APIs - just like application plugins, but for the Windows/*nix
Disclaimer : I work for Correlsense, provider of APM software SharePath, which uses all of the above methods to give you complete end-to-end transaction visibility.

Why there is no WPA3?

I'm a beginner in WLAN security. I was going through various articles and noticed that WEP, WPA and even WPA2 (Hole 196) has some drawback.
I came to know that, if the Group Temporal Key is made unique for clients, then the Hole 196 vulnerability can be compromised.
Then, why is there no WPA3 still?
WPA3 has been announced:
Uses a new handshake which won’t be vulnerable to dictionary attacks.
Features a 192-bit security suite aligned with the Commercial National Security Algorithm (CNSA) Suite that will protect government, defense, and industrial networks that have higher security requirements.
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-wi-fi-certified-wpa3-security

Resources