my input image:
I want get bounding box for each object:
the input image is a binary image which segmented with cnn(salient object detection,but the black areas sticked to each other,I want to seperate them to get the bounding box for each box。
the original image:
with salient object detection and post-processing we get:
but I want this:
ps:I don't want approaches like yolo/SSD which need to train with custom dataset
Related
I am doing object detection in order to count penguins on a UAV georeferenced dataset, so for practical reasons let's say they appear as dots on the images. After running the object detection model, it returns inferred images with the corresponding bounding boxes for each penguin detected.
I need to extract the coordinate of the center of the bounding box (something like x,y), so, as the image is georeferenced, I would be able to convert image b.box center coordinates into GPS coordinates.
This picture is a good example. Here, the authors are counting banana plants, and after detecting the plants of the same regions in 3 differently-treated pictures of the same area, they see that up to three boxes appear around some of the plants (left). So in order to count each plant as one, despite having some of them up to 3 bboxes, this is what they do (quoted from the original article):
Collect bounding boxes of detection from each ROI tiles.
Calculate centroid of each bounding box.
Add the tile number information on x and y-value of centroids to overlay them on original ROI image.
And this is exactly what I am looking for, the step number 3, how to calculate the centroid of each bbox and how to obtain the x,y coords, so then I would be able to transform those coords into real ones, as the image is georeferenced, and then display each real coord on a mosaic.
Thank you very much in advance.
You could use the Intersection over Union algorithm to select one of the boxes and then use the coordinates of the selected box to plot the output circle or box over detected objects.
I'm working on a project which locates the Machine Readable Zone on ID cards.
For this I need to do some pre processing to extract the ID card from a scanned image which typically are randomly disposed on a white page. I'm able to locate the majority of the cards by using a Histogram equalization with CLAHE before a contour detection. But in some cases the border around the MRZ is totally invisible (white on white) as shown on the attached image.
I'd like to detect rectangle of a predefined shape as I know the shape of the ID card will be always the same but so far I wasn't able to find a way do do something like this with OpenCV.
Basically what I need is to find two rectangle of a fixed ratio that best match the 2 cards on the scan.
I'm wondering if I need to try OpenCV matchers or if there is a simpler way to accomplish this kind of detection.
The solution to you problem is likely going to be matrix transformations. The concept is to pinpoint 4 coordinates on the card that can be easily detected using opencv, such as the the rectangle colored in blue & cyan.
Have coordinates of the card with the predefined shape stored in an array, where a corner of the card is at the 0, 0. Also store the coordinates of the blue * cyan rectangle in an array. With the two arrays you can find the perspective transform of the two arrays using the cv2.getPerspectiveTransform method.
Using the perspective transform found, you can detect the coordinates of the whole card every time you detect the coordinates of the blue & cyan rectangle.
I'd like to figure out a method for finding bounding boxes of words or a pair of words in binary image. The image itself looks like this: (bounding boxes I need are marked by blue rectangles).
Image is free of any other objects. I'm thinking about some form of connected component analysis, like detecting single letters first, then "drawing" their bounding boxes on another Mat object in such a way that neighbouring letters connect. There is a useful information I'd like to utilize - word or a pair of words forms a horizontal line, which is an information that could be used to separate "Hello there" and "abcdf" - I just don't know how to do it.
Contour the image.
Pick contours with a suitable area and width/height to be letters - get coords of centers.
From list of centers decide how far apart 2 centers can be to be adjacent letters
rather than a gap.
Group these contours into a word and take their
bounding box
Opencv has clustering, contour area and bounding box funcs if you don't want to do it yourself
Do OX-dilation using window size N, where N is approximate 1..2 size of letter width, then you will have black filled "boxes".
Find contours ( see http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html ).
Find rectangles and correct its with (minus approx 1 size of letter width) due to dilation width enlargement.
I am learning JavaCV and want to extract part of images dynamically based on color.
As identification I am outlining the region which I need to extract with a color. Is there anyway I can do extract ROI based on color outline. Any help appreciated.
Here is the Sample Image
it is quite simple. Since your figure has 4 corners hence you ought to follow the following steps.
1.identify the orientation of the image and store the points in a MatofPoint2f in a specific order.
(clock wise or anti clockwise- For this you can use Math.atan2(p1(y)-centerpoint(y),p1(x)-centerpoint(x)) and then sort the points according to the result of the equation. find the center point by finding the avg all the xcoords and y coords or any method you prefer).
2.Create a MatofPoint2f containing the corner coords of the result image size you want the cropped image in.
3.use Imgproc.getPerspectiveTransform() to perform the cropping.
4.Finally use Imgproc.warpPerspective() to obtain the output that is desired.
And for creating the border of the ROI the best way to go is to threshold the image by using some specific range so as to extract only those parts of the spectrum which is required.
I am trying to crop a picture on right on along the contour. The object is detected using surf features and than i want to crop the image of extactly as detected.
When using crop some outside boundaries of other object is includes. I want to crop along the green line below. OpenCV has RotatedRect but i am unsure if its good for cropping.
Is there way to perfectly crop along the green line
I assume you get you get your example from http://docs.opencv.org/doc/tutorials/features2d/feature_homography/feature_homography.html, so what you can do is to find the minimum axis aligned bounding box around the green bounding box, crop it from the image, use the inverted homography (H.inv()) matrix to transform that sub image into a new image (call cv::warpPerspective), and then crop your green bounding box (it should be axis aligned in your new image).
You can get the equations of the lines from the end points for each. Use these equations to check whether any given pixel lies within the green box or not i.e. does it lie between the left and right lines and between the top and bottom lines. Run this over the entire image and reset anything that doesn't lie within the box to black.
Not sure about in-built functionality to do this, but this simple methodology is guaranteed to work. For higher accuracy, you may want to consider sub-pixel checks.