So i m working on a subject called reinforcement learning approch for indoor localisation,
My main objective is given a output of localization algorithm (exemple : RSSi fingerprintins) , how can i use reinforcement learning to adjust those output and minimize error compared to the real localisation values.
I would like to know if there s a terme that sums this approch , i searched and asked some people and they told me about boosting , i would like to know you thoughts
I need articles if possible or any terms for research that may help.
Related
I'm now in the middle of the semester and trying to understand the background of the algorithms and features.
I would like to understand some theory.
If I have a dataset with N samples.
each sample has 5 features for example.
I have done 3 kinds of classifications algorithms for example : SVM, decision tree and kMeans.
In all 3, I got nice results
In a mystery way, a new feature added to the dataset. The value of the features for every sample selected randomly.
I restarted the algorithms on the dataset ( with the new feature)
Are the classification results gonna change from the first results without the new feature? If yes, why are they gonna change and by how much ?
In addition, if I do not have the dataset how can I know how to recognize that new feature?
The results of your classification algorithm are going to either change or stay the same depending on how much information the model gains from the feature. If the feature for instance is random noise then it will have little to no effect on your model, other than slowing it down. If it contains useful information it might be able to increase parameters such as recall and precision. Hope this might help.
I'm working on unsupervised aspect based sentiment analysis. I tried using Vader for it, which gave me good result but the problem is if the topic is negative like 'food waste' then the sentiment is always coming as negative even though content is saying 'and i really hate food waste'.
Can someone help me in tackling this issue, or even suggest me a method better than Vader.
I've also tried using 'Flair' but its' results are not as promising as Vader.
Probably the rule-based model VADER uses is not a good approach in this case, in that phrase you have 3 words that will surely get a negative score (hate food waste), remember that VADER is optimized for succint social media data and it cannot get a very good grasp of the "context" of the phrases.
A similar approach to VADER is us in TextBlob, wich you can try withuot much work: https://textblob.readthedocs.io/en/dev/
Usually the supervised route gives better results, but you need a good pretrained model and good data.
Naive Bayes classifier in scikit-learn:
https://www.datacamp.com/community/tutorials/simplifying-sentiment-analysis-python
Random Forest approach, always using scikit-learn:
https://stackabuse.com/python-for-nlp-sentiment-analysis-with-scikit-learn/
Here is a recap on various approaches to sentiment analysis:
https://towardsdatascience.com/fine-grained-sentiment-analysis-in-python-part-1-2697bb111ed4
I must participate in a research project regarding a deep learning application for classification. I have a huge dataset containing over 35000 features - these are good values, taken from laboratory.
The idea is that I should create a classifier that must tell, given a new input, if the data seems to be good or not. I must use deep learning with keras and tensor flow.
The problem is that the data is not classified. I will enter a new column with 1 for good and 0 for bad. Problem is, how can I find out if an entry is bad, given the fact that the whole training set is good?
I have thought about generating some garbage data but I don't know if this is a good idea - I don't even know how to generate it. Do you have any tips?
I would start with anamoly detection. You can first reduce features with f.e. an (stacked) autoencoder and then use local outlier factor from sklearn: https://scikit-learn.org/stable/modules/outlier_detection.html
The reason why you need to reduce features first is, is because your LOF will be much more stable.
I have recently watched a video explaining that for Deep Learning, if you add more data, you don't need as much regularization, which sort of makes sense.
This being said, does this statement hold for "normal" Machine Learning algorithms like Random Forest for example ? And if so, when searching for the best hyper-parameters for the algorithm, in theory you should have as input dataset ( of course that gets further divided into cross validation sets etc ) as much data as you have, and not just a sample of it. This of course means a muuch longer training time, as for every combination of hyper-params you have X cross-validation sets which need to be trained and so on.
So basically, is it fair to assume that the params found for a decently size sample of your dataset are the "best" ones to use for the entire dataset or isn't it ?
Speaking from a statistician's point of view: it really depends on the quality of your estimator. If it's unbiased and low-variance, then a sample will be fine. If the variance is high, you'll want to use all the data you can.
I am new in machine learning. My problem is to make a machine to select a university for the student according to his location and area of interest. i.e it should select the university in the same city as in the address of the student. I am confused in selection of the algorithm can I use Perceptron algorithm for this task.
There are no hard rules as to which machine learning algorithm is the best for which task. Your best bet is to try several and see which one achieves the best results. You can use the Weka toolkit, which implements a lot of different machine learning algorithms. And yes, you can use the perceptron algorithm for your problem -- but that is not to say that you would achieve good results with it.
From your description it sounds like the problem you're trying to solve doesn't really require machine learning. If all you want to do is match a student with the closest university that offers a course in the student's area of interest, you can do this without any learning.
I second the first remark that you probably don't need machine learning if the student has to live in the same area as the university. If you want to use an ML algorithm, maybe it would best to think about what data you would have to start with. The thing that comes to mind is a vector for a university that has certain subjects/areas for each feature. Then compute a distance from a vector which is like an ideal feature vector for the student. Minimize this distance.
The first and formost thing you need is a labeled dataset.
It sounds like the problem could be decomposed into a ML problem however you first need a set of positive and negative examples to train from.
How big is your dataset? What features do you have available? Once you answer these questions you can select an algorithm that bests fits the features of your data.
I would suggest using decision trees for this problem which resembles a set of if else rules. You can just take the location and area of interest of the student as conditions of if and else if statements and then suggest a university for him. Since its a direct mapping of inputs to outputs, rule based solution would work and there is no learning required here.
Maybe you can use a "recommender system"or a clustering approach , you can investigate more deeply the techniques like "collaborative filtering"(recommender system) or k-means(clustering) but again, as some people said, first you need data to learn from, and maybe your problem can be solved without ML.
Well, there is no straightforward and sure-shot answer to this question. The answer depends on many factors like the problem statement and the kind of output you want, type and size of the data, the available computational time, number of features, and observations in the data, to name a few.
Size of the training data
Accuracy and/or Interpretability of the output
Accuracy of a model means that the function predicts a response value for a given observation, which is close to the true response value for that observation. A highly interpretable algorithm (restrictive models like Linear Regression) means that one can easily understand how any individual predictor is associated with the response while the flexible models give higher accuracy at the cost of low interpretability.
Speed or Training time
Higher accuracy typically means higher training time. Also, algorithms require more time to train on large training data. In real-world applications, the choice of algorithm is driven by these two factors predominantly.
Algorithms like Naïve Bayes and Linear and Logistic regression are easy to implement and quick to run. Algorithms like SVM, which involve tuning of parameters, Neural networks with high convergence time, and random forests, need a lot of time to train the data.
Linearity
Many algorithms work on the assumption that classes can be separated by a straight line (or its higher-dimensional analog). Examples include logistic regression and support vector machines. Linear regression algorithms assume that data trends follow a straight line. If the data is linear, then these algorithms perform quite good.
Number of features
The dataset may have a large number of features that may not all be relevant and significant. For a certain type of data, such as genetics or textual, the number of features can be very large compared to the number of data points.