Note: I am migrating this question from Data Science Stack Exchange, where it received little exposure.
I am trying to implement an OCR solution to identify the numbers read from the picture of a screen.
I am adapting this pyimagesearch tutorial to my problem.
Because I am dealing with a dark background, I first invert the image, before converting it to grayscale and thresholding it:
inverted_cropped_image = cv2.bitwise_not(cropped_image)
gray = get_grayscale(inverted_cropped_image)
thresholded_image = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY)[1]
Then I call pytesseract's image_to_data function to output a dictionary containing the different text regions and their confidence intervals:
from pytesseract import Output
results = pytesseract.image_to_data(thresholded_image, output_type=Output.DICT)
Finally I iterate over results and plot them when their confidence exceeds a user defined threshold (70%). What bothers me, is that my script identifies everything in the image except the number that I would like to recognize (1227.938).
My first guess is that the image_to_data parameters are not set properly.
Checking this website, I selected a page segmentation mode (psm) of 11 (sparse text) and tried whitelisting numbers only (tessedit_char_whitelist=0123456789m.'):
results = pytesseract.image_to_data(thresholded_image, config='--psm 11 --oem 3 -c tessedit_char_whitelist=0123456789m.', output_type=Output.DICT)
Alas, this is even worse, and the script now identifies nothing at all!
Do you have any suggestion? Am I missing something obvious here?
EDIT #1:
At Ann Zen's request, here's the code used to obtain the first image:
import imutils
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pytesseract
from pytesseract import Output
def get_grayscale(image):
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
filename = "IMAGE.JPG"
cropped_image = cv2.imread(filename)
inverted_cropped_image = cv2.bitwise_not(cropped_image)
gray = get_grayscale(inverted_cropped_image)
thresholded_image = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY)[1]
results = pytesseract.image_to_data(thresholded_image, config='--psm 11 --oem 3 -c tessedit_char_whitelist=0123456789m.', output_type=Output.DICT)
color = (255, 255, 255)
for i in range(0, len(results["text"])):
x = results["left"][i]
y = results["top"][i]
w = results["width"][i]
h = results["height"][i]
text = results["text"][i]
conf = int(results["conf"][i])
print("Confidence: {}".format(conf))
if conf > 70:
print("Confidence: {}".format(conf))
print("Text: {}".format(text))
print("")
text = "".join([c if ord(c) < 128 else "" for c in text]).strip()
cv2.rectangle(cropped_image, (x, y), (x + w, y + h), color, 2)
cv2.putText(cropped_image, text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX,1.2, color, 3)
cv2.imshow('Image', cropped_image)
cv2.waitKey(0)
EDIT #2:
Rarely have I spent reputation points so well! All three replies posted so far helped me refine my algorithm.
First, I wrote a Tkinter program allowing me to manually crop the image around the number of interest (modifying the one found in this SO post)
Then I used Ann Zen's idea of narrowing down the search area around the fractional part. I am using her nifty process function to prepare my grayscale image for contour extraction: contours, _ = cv2.findContours(process(img_gray), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE). I am using RETR_EXTERNAL to avoid dealing with overlapping bounding rectangles.
I then sorted my contours from left to right. Bounding rectangles exceeding a user-defined threshold are associated with the integral part (white rectangles); otherwise they are associated with the fractional part (black rectangles).
I then extracted the characters using Esraa's approach i.e. applying a Gaussian blur prior to calling Tesseract. I used a much larger kernel (15x15 vs 3x3) to achieve this.
I am not out of the woods yet, but hopefully I will get better results by using Ahx's adaptive thresholding.
The Concept
As you have probably heard, pytesseract is not good at detecting text of different sizes on the same line as one piece of text. In your case, you want to detect the 1227.938, where the 1227 is much larger than the .938.
One way to go about solving this is to have the program estimate where the .938 is, and enlarge that part of the image. After that, pytesseract will have no problem in returning the text.
The Code
import cv2
import numpy as np
import pytesseract
def process(img):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(img_gray, 200, 255, cv2.THRESH_BINARY)
img_canny = cv2.Canny(thresh, 100, 100)
kernel = np.ones((3, 3))
img_dilate = cv2.dilate(img_canny, kernel, iterations=2)
return cv2.erode(img_dilate, kernel, iterations=2)
img = cv2.imread("image.png")
img_copy = img.copy()
hh = 50
contours, _ = cv2.findContours(process(img), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
for cnt in contours:
if 20 * hh < cv2.contourArea(cnt) < 30 * hh:
x, y, w, h = cv2.boundingRect(cnt)
ww = int(hh / h * w)
src_seg = img[y: y + h, x: x + w]
dst_seg = img_copy[y: y + hh, x: x + ww]
h_seg, w_seg = dst_seg.shape[:2]
dst_seg[:] = cv2.resize(src_seg, (ww, hh))[:h_seg, :w_seg]
gray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 180, 255, cv2.THRESH_BINARY)
results = pytesseract.image_to_data(thresh)
for b in map(str.split, results.splitlines()[1:]):
if len(b) == 12:
x, y, w, h = map(int, b[6: 10])
cv2.putText(img, b[11], (x, y + h + 15), cv2.FONT_HERSHEY_COMPLEX, 0.6, 0)
cv2.imshow("Result", img)
cv2.waitKey(0)
The Output
Here is the input image:
And here is the output image:
As you have said in your post, the only part you need the the decimal 1227.938. If you want to filter out the rest of the detected text, you can try tweaking some parameters. For example, replacing the 180 from _, thresh = cv2.threshold(gray, 180, 255, cv2.THRESH_BINARY) with 230 will result in the output image:
The Explanation
Import the necessary libraries:
import cv2
import numpy as np
import pytesseract
Define a function, process(), that will take in an image array, and return a binary image array that is the processed version of the image that will allow proper contour detection:
def process(img):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(img_gray, 200, 255, cv2.THRESH_BINARY)
img_canny = cv2.Canny(thresh, 100, 100)
kernel = np.ones((3, 3))
img_dilate = cv2.dilate(img_canny, kernel, iterations=2)
return cv2.erode(img_dilate, kernel, iterations=2)
I'm sure that you don't have to do this, but due to a problem in my environment, I have to add pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe' before I can call the pytesseract.image_to_data() method, or it throws an error:
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
Read in the original image, make a copy of it, and define the rough height of the large part of the decimal:
img = cv2.imread("image.png")
img_copy = img.copy()
hh = 50
Detect the contours of the processed version of the image, and add a filter that roughly filters out the contours so that the small text remains:
contours, _ = cv2.findContours(process(img), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
for cnt in contours:
if 20 * hh < cv2.contourArea(cnt) < 30 * hh:
Define the bounding box of each contour that didn't get filtered out, and use the properties to enlarge those parts of the image to the height defined for the large text (making sure to also scale the width accordingly):
x, y, w, h = cv2.boundingRect(cnt)
ww = int(hh / h * w)
src_seg = img[y: y + h, x: x + w]
dst_seg = img_copy[y: y + hh, x: x + ww]
h_seg, w_seg = dst_seg.shape[:2]
dst_seg[:] = cv2.resize(src_seg, (ww, hh))[:h_seg, :w_seg]
Finally, we can use the pytesseract.image_to_data() method to detect the text. Of course, we'll need to threshold the image again:
gray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 180, 255, cv2.THRESH_BINARY)
results = pytesseract.image_to_data(thresh)
for b in map(str.split, results.splitlines()[1:]):
if len(b) == 12:
x, y, w, h = map(int, b[6: 10])
cv2.putText(img, b[11], (x, y + h + 15), cv2.FONT_HERSHEY_COMPLEX, 0.6, 0)
cv2.imshow("Result", img)
cv2.waitKey(0)
I have been working with Tesseract for quite some time, so let me clarify something for you. Tesseract is extremely helpful if you're trying to recognize text in documents more than any other computer vision projects. It usually needs a binarized image to get a good output. Therefore, you will always need some image pre-processing.
However, after several trials in the past with all page segmentation modes, I realized that it fails when font size differs on the same line without having a space. Sometimes PSM 6 is helpful if the difference is low, but in your condition, you may try an alternative. If you don't care about the decimals, you may try the following solution:
img = cv2.imread(r'E:\Downloads\Iwzrg.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_blur = cv2.GaussianBlur(gray, (3,3),0)
_,thresh = cv2.threshold(img_blur,200,255,cv2.THRESH_BINARY_INV)
# If using a fixed camera
new_img = thresh[0:100, 80:320]
text = pytesseract.image_to_string(new_img, lang='eng', config='--psm 6 --oem 3 -c tessedit_char_whitelist=0123456789')
OUTPUT: 1227
I would like to recommend applying another image processing method.
Because I am dealing with a dark background, I first invert the image, before converting it to grayscale and thresholding it:
You applied global thresholding and couldn't achieve the desired result.
Then you can apply either adaptive-thresholding or inRange
For the given image, if we apply the inRange threshold:
To be able to recognize the image as accurately as possible we can add a border to the top of the image and resize the image (Optional)
In the OCR section, check if the detected region contains a digit
if text.isdigit():
Then display on the image:
The result is nearly the desired value. Now you can try with the other suggested methods to find the exact value.
The problem is .938 recognized as 235, maybe resizing using different values might improve the result.
Code:
from cv2 import imread, cvtColor, COLOR_BGR2HSV as HSV, inRange, getStructuringElement, resize
from cv2 import imshow, waitKey, MORPH_RECT, dilate, bitwise_and, rectangle, putText
from cv2 import copyMakeBorder as addBorder, BORDER_CONSTANT as CONSTANT, FONT_HERSHEY_SIMPLEX
from numpy import array
from pytesseract import image_to_data, Output
bgr = imread("Iwzrg.png")
resized = resize(bgr, (800, 600), fx=0.75, fy=0.75)
bordered = addBorder(resized, 200, 0, 0, 0, CONSTANT, value=0)
hsv = cvtColor(bordered, HSV)
mask = inRange(hsv, array([0, 0, 250]), array([179, 255, 255]))
kernel = getStructuringElement(MORPH_RECT, (50, 30))
dilated = dilate(mask, kernel, iterations=1)
thresh = 255 - bitwise_and(dilated, mask)
data = image_to_data(thresh, output_type=Output.DICT)
for i in range(0, len(data["text"])):
x = data["left"][i]
y = data["top"][i]
w = data["width"][i]
h = data["height"][i]
text = data["text"][i]
if text.isdigit():
print("Text: {}".format(text))
print("")
text = "".join([c if ord(c) < 128 else "" for c in text]).strip()
rectangle(thresh, (x, y), (x + w, y + h), (0, 255, 0), 2)
putText(thresh, text, (x, y - 10), FONT_HERSHEY_SIMPLEX, 1.2, (0, 0, 255), 3)
imshow("", thresh)
waitKey(0)
For example i've an image like below
I want to draw a box for recognize_text() which is in the first line with mouse and extract that text with the help of Pytesseract or EasyOCR in python. Can anyone please help me with this?
There is a python code in github. I'm attaching the link below and the image. The code will enable to draw one rectangle. But i'm unable to extract text present in that rectangle.
https://github.com/arccoder/opencvdragrect
You can use image_to_data
import cv2
from numpy import array
import pytesseract
from pytesseract import Output
# Load the image
thr = cv2.imread("KKLoQ.jpg")
d = pytesseract.image_to_data(thr, config="--psm 6", output_type=Output.DICT)
n_boxes = len(d['level'])
n_boxes variable stores all the detected text regions in the given input image.
Now, for each localized region, we need to get the coordinates and draw the box (rectangle method)
for c, i in enumerate(range(n_boxes)):
# Get the localized region
(x, y, w, h) = (d['left'][i], d['top'][i], d['width'][i], d['height'][i])
# Draw rectangle to the detected region
cv2.rectangle(thr, (x, y), (x+w, y+h), (0, 0, 255), 1)
# Crop the image
crp = thr[y:y+h, x:x+w]
# OCR
txt = pytesseract.image_to_string(crp, config="--psm 6")
print(txt)
# Display the cropped image
cv2.imshow("crp", crp)
cv2.waitKey(0)
# Debug purpose
cv2.imwrite(f"/Desktop/cropped{c}.png", crp)
Since you want to draw the box (rectangle) around the text "recognize_text", you can do:
if "recognize " in txt:
print(txt)
# Display the cropped image
cv2.imshow("crp", crp)
cv2.waitKey(0)
# Debug purpose
cv2.imwrite(f"/Users/Desktop/cropped{c}.png", crp)
Results will be:
1
2
Most probably the second result is what you wanted.
Maybe you could also add another constraint:
if text length is equal to the two then draw the box, since "recognize text()" is two words.
You should also read the improving tesseract quality
Code:
import cv2
import pytesseract
from pytesseract import Output
# Load the image
thr = cv2.imread("KKLoQ.jpg")
# OCR
d = pytesseract.image_to_data(thr, config="--psm 6", output_type=Output.DICT)
n_boxes = len(d['level'])
for c, i in enumerate(range(n_boxes)):
# Get the localized region
(x, y, w, h) = (d['left'][i], d['top'][i], d['width'][i], d['height'][i])
# Crop the image
crp = thr[y:y+h, x:x+w]
# OCR
txt = pytesseract.image_to_string(crp, config="--psm 6")
text_length = txt.split(" ")
if "recognize" in txt and len(text_length) == 2:
print(txt)
# Draw rectangle to the detected region
cv2.rectangle(thr, (x, y), (x+w, y+h), (0, 0, 255), 3)
# Debug purpose
cv2.imwrite(f"/Users/Desktop/cropped{c}.png", crp)
cv2.imshow("", thr)
cv2.waitKey(0)
Result:
I have this image of the world :
And this image of europe :
What technique could I use to approximately locate the image of europe within the world map?
Template matching is a technique for finding similar images within larger images, but it requires the template to be of the same size as in the sub-image. In this example OpenCV was used, but it can also be done using scikit-image.
import cv2
from imageio import imread
img = imread("https://i.stack.imgur.com/OIsWn.png", pilmode="L")
template = imread("https://i.stack.imgur.com/fkNeW.png", pilmode="L")
# threshold images for equal colours
img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)[1]
template = cv2.threshold(template, 127, 255, cv2.THRESH_BINARY)[1]
aspect_ratio = template.shape[1] / template.shape[0]
# estimate the width and compute the height based on the aspect ratio
w = 380
h = int(w / aspect_ratio)
# resize the template to match the sub-image as best as possible
template = cv2.resize(template, (w, h))
result = cv2.matchTemplate(img, template, cv2.TM_CCOEFF)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
cv2.rectangle(img, top_left, bottom_right, 127, 3)
cv2.imwrite("europe_bounding_box.png", img)
Result:
Although this example uses a predetermined estimated width, it is also possible to test a range of possible widths and determine which value results in the best match.
I’m researching the subject of extracting the information from ID cards and have found a suitable algorithm to locate the face on the front. As it is, OpenCV has Haar cascades for that, but I’m unsure what can be used to extract the full rectangle that person is in instead of just the face (as is done in https://github.com/deepc94/photo-id-ocr). The few ideas that I’m yet to test are:
Find second largest rectangle that’s inside the card containing the face rect
Do “explode” of the face rectangle until it hits the boundary
Play around with filters to see what can be seen
What can be recommended to try here as well? Any thoughts, ideas or even existing examples are fine.
Normal approach:
import cv2
import numpy as np
import matplotlib.pyplot as plt
image = cv2.imread("a.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_,thresh = cv2.threshold(gray,128,255,cv2.THRESH_BINARY)
cv2.imshow("thresh",thresh)
thresh = cv2.bitwise_not(thresh)
element = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=(7, 7))
dilate = cv2.dilate(thresh,element,6)
cv2.imshow("dilate",dilate)
erode = cv2.erode(dilate,element,6)
cv2.imshow("erode",erode)
morph_img = thresh.copy()
cv2.morphologyEx(src=erode, op=cv2.MORPH_CLOSE, kernel=element, dst=morph_img)
cv2.imshow("morph_img",morph_img)
_,contours,_ = cv2.findContours(morph_img,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
areas = [cv2.contourArea(c) for c in contours]
sorted_areas = np.sort(areas)
cnt=contours[areas.index(sorted_areas[-3])] #the third biggest contour is the face
r = cv2.boundingRect(cnt)
cv2.rectangle(image,(r[0],r[1]),(r[0]+r[2],r[1]+r[3]),(0,0,255),2)
cv2.imshow("img",image)
cv2.waitKey(0)
cv2.destroyAllWindows()
I found the first two biggest contours are the boundary, the third biggest contour is the face. Result:
There is also another way to investigate the image, using sum of pixel values by axises:
x_hist = np.sum(morph_img,axis=0).tolist()
plt.plot(x_hist)
plt.ylabel('sum of pixel values by X-axis')
plt.show()
y_hist = np.sum(morph_img,axis=1).tolist()
plt.plot(y_hist)
plt.ylabel('sum of pixel values by Y-axis')
plt.show()
Base on those pixel sums over 2 asixes, you can crop the region you want by setting thresholds for it.
Haarcascades approach (The most simple)
# Using cascade Classifiers
import numpy as np
import cv2
# We point OpenCV's CascadeClassifier function to where our
# classifier (XML file format) is stored
face_classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# Load our image then convert it to grayscale
image = cv2.imread('./your/image/path.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow('Original image', image)
# Our classifier returns the ROI of the detected face as a tuple
# It stores the top left coordinate and the bottom right coordiantes
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
# When no faces detected, face_classifier returns and empty tuple
if faces is ():
print("No faces found")
# We iterate through our faces array and draw a rectangle
# over each face in faces
for (x, y, w, h) in faces:
x = x - 25 # Padding trick to take the whole face not just Haarcascades points
y = y - 40 # Same here...
cv2.rectangle(image, (x, y), (x + w + 50, y + h + 70), (27, 200, 10), 2)
cv2.imshow('Face Detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
Link to the haarcascade_frontalface_default file
update to #Sanix darker code,
# Using cascade Classifiers
import numpy as np
import cv2
img = cv2.imread('link_to_your_image')
face_classifier = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
scale_percent = 60 # percent of original size
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
dim = (width, height)
# resize image
image = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# face classifier
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
# When no faces detected, face_classifier returns and empty tuple
if faces is ():
print("No faces found")
# We iterate through our faces array and draw a rectangle
# over each face in faces
for (x, y, w, h) in faces:
x = x - 25 # Padding trick to take the whole face not just Haarcascades points
y = y - 40 # Same here...
cv2.rectangle(image, (x, y), (x + w + 50, y + h + 70), (27, 200, 10), 2)
cv2.imshow('Face Detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# if you want to crop the face use below code
for (x, y, width, height) in faces:
roi = image[y:y+height, x:x+width]
cv2.imwrite("face.png", roi)
I have done otsu thresholding on this bengali text image and use tesseract to OCR but the output is very bad. What preprocessing should I apply to remove the noise? I want to deskew the image as well, as it has slight skewed.
My code is given below
import tesserocr
from PIL import Image
import cv2
import codecs
image = cv2.imread("crop2.bmp", 0)
(thresh, bw_img) = cv2.threshold(image, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
img = Image.fromarray(bw_img)
text = tesserocr.image_to_text(img, lang='ben')
file = codecs.open("output_text", "w", "utf-8")
file.write(text)
file.close()
You can remove the noises by removing small connected components that might improve the accuracy. You would also need to get optimum value for noisy components threshold value.
import cv2
import numpy as np
img = cv2.imread(r'D:\Image\st5.png',0)
ret, bw = cv2.threshold(img, 128,255,cv2.THRESH_BINARY_INV)
connectivity = 4
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(bw, connectivity, cv2.CV_32S)
sizes = stats[1:, -1]; nb_components = nb_components - 1
min_size = 50 #threshhold value for small noisy components
img2 = np.zeros((output.shape), np.uint8)
for i in range(0, nb_components):
if sizes[i] >= min_size:
img2[output == i + 1] = 255
res = cv2.bitwise_not(img2)
Denoised image: