I have been trying to calculate busload in CAPL but it is always 0 no matter how many message signals i send from my node.
I tried using the BusLoad member and some other helps from stack overflow itself but to my vain i couldn't find the solution due to small community. Can someone help me with how to calculate bus load on CAPL.
busloadCAN = canGetBusLoad(1);
write ("CAN1 busload = %d", CAN1.BusLoad);
this was soemthing that i tried to use
Related
I am currently attempting to record and graph coherence scores for various topic number values in order to determine the number of topics that would be best for my corpus. After several trials using u_mass, the data proved to be inconclusive since the scores don't plateau around a specific topic number. I'm aware that CV ranges from -14 to 14 when using u_mass, however my values range from -2 to -1 and selecting an accurate topic number is not possible. Due to these issues, I attempted to use c_v instead of u_mass but I receive the following error:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
This is my code for computing the coherence value
cm = CoherenceModel(model=ldamodel, texts=texts, dictionary=dictionary,coherence='c_v')
print("THIS IS THE COHERENCE VALUE ")
coherence = cm.get_coherence()
print(coherence)
If anyone could provide assistance in resolving my issues for either c_v or u_mass, it would be greatly appreciated! Thank you!
I'm pretty new to using GNURadio and I'm having trouble recovering the data from a signal that I've saved into a file. The signal is a carrier frequency of 56KHz with a frequency shift key of +/- 200hz at 600 baud.
So far, I've been able to demodulate the signal that looks similar to the signal I get from the source:
I'm trying to get this into a repeating string of 1s and 0s (the whole telegram is 38 bytes long and it continuously repeats). I've tried to use a clock recovery block in order to have only one byte per sample, but I'm not having much luck. Using the M&M clock recovery block, the whole telegram sometimes comes out correct, but it is not consistent. I've tried to adjust the omega and Mu values, but it doesn't seem to help that much. I've also tried using the Polyphase Clock sync, but I keep getting a runtime error of 'please specify a filter'. Is this asking me to add a tap? what tap would i use?
So I guess my overall question would be: What's the best way to get the telegram out of the demodulated fsk signal?
Again, pretty new at this so please let me know if I've missed something crucial. GNU flow graph below:
You're recovering the bit timing, but you're not recovering the byte boundaries – that needs to happen "one level higher", eg. by a well-known packet format with a defined preamble that you can look for.
I need to find the number of times the accelerometer value stream attains a maximum. I made a plot of the accelerometer values obtained from an iPhones against time, using CoreMotion method to obtain the DeviceMotionUpdates. When the data was being recorded, I shook the phone 9 times (where each extremity was one of the highest points of acceleration).
I have marked the 18 (i.e. 9*2) times when acceleration had attained maximum in red boxes on the plot.
But, as you see, there are some local maxima that I do not want to consider. Can someone direct me towards an idea that will help me achieve detecting only the maxima of importance to me?
Edit: I think I have to use a low pass filter. But, how do I implement this in Swift? How do I choose the frequency of cut-off?
Edit 2:
I implemented a low pass filter and passed the raw motion data through it and obtained the graph as shown below. This is a lot better. I still need a way to avoid the insignificant maxima that can be observed. I'll work in depth with the filter and probably fix it.
Instead of trying to find the maximas, I would try to look for cycles. Especially, we note that the (main) minimas seem to be a lot more consistent than the maximas.
I am not familiar with swift, so I'll layout my idea in pseudo code. Suppose we have our values in v[i] and the derivative in dv[i] = v[i] - v[i - 1]. You can use any other differentiation scheme if you get a better result.
I would try something like
cycles = [] // list of pairs
cstart = -1
cend = -1
v_threshold = 1.8 // completely guessing these figures looking at the plot
dv_threshold = 0.01
for i in v:
if cstart < 0 and
v[i] > v_threshold and
dv[i] < dv_threshold then:
// cycle is starting here
cstart = i
else if cstart > 0 and
v[i] < v_threshold and
dv[i] < dv_threshold then:
// cycle ended
cend = i
cycles.add(pair(cstart, cend))
cstart = -1
cend = -1
end if
Now you note in comments that the user should be able to shake with different force and you should be able to recognise the motion. I would start with a simple 'hard-coded' cases as the one above, and see if you can get it to work sufficiently well. There is a lot of things you could try to get a variable threshold, but you will nevertheless always need one. However, from the data you show I strongly suggest at least limiting yourself to looking at the minimas and not the maximas.
Also: the code I suggested is written assuming you have the full data set, however you will want to run this in real time. This will be no problem, and the algorithm will still work (that is, the idea will still work but you'll have to code it somewhat differently).
I have been trying to get my hands dirty with Information Retrieval.My professor gave us this problem to solve, but I can't get my way around it. The matrix given, if it is a distance matrix, the diagonal elements should all be 0. But in the table, they're given as 1. The other entries are also less than 1. How is this possible? Can someone please explain?
Please see question 5.c. I could not enter the table manually and apologize for that.
In every similarity measurement, 1 means totally similar and 0 means there is no similarity between documents.
I am trying to drive down the current consumption of the contiki os running on the CC2538 development kit.
I would like to operate the device from a CR2032 with a run life of 2 years. To achieve this I would need an average current less than 100uA.
However when I run the following at 3V, I get the following results:
contiki/examples/hello-world = 0.4mA - 2mA
contiki/examples/er-rest-example/er-example-client = 27mA
contiki/examples/er-rest-example/er-example-server = 27mA
thingsquare websocket example = 4mA
I have also designed my own target platform based on the cc2538 and get similar results.
I have read the guide at https://github.com/contiki-os/contiki/blob/648d3576a081b84edd33da05a3a973e209835723/platform/cc2538dk/README.md
and have ensured that in the contiki-conf.h file:
- LPM_CONF_ENABLE 1
- LPM_CONF_MAX_PM 2
Can anyone give me some pointers as to how I can get the current down. It would be most appreciated.
Regards,
Shane
How did you measure the current?
You have to be aware that using a basic ampere meter to measure the current consumption of contiki-os wouldn't give you relevant results. The system is turning on/off the radio at a relative high rate (8Hz by default) in order to perform the CCA. This might not be very easy to catch for an ampere meter.
To have an idea of the current consumption when the device is in deep sleep (and then make calculation to determine the averaged current consumption), I'd rather put the device in the PM state before the program reach the infinite while loop. I used the following code to do that:
lpm_enter();
REG(SYS_CTRL_PMCTL) = SYS_CTRL_PMCTL_PM2;
do { asm("wfi"::); } while(0);
leds_on(LEDS_RED); // should not reach here
while(1){
...
On the CC2538, the CCA check consumes about 10-15mA and last approximately 2ms. When the radio transmit a packet, it consume 25mA. Have a look at this post: Contiki UDP packet transmission duration with CC2538.
Furthermore, to save a little more current, turn off the serial com:
#define CC2538_CONF_QUIET 1
Are you using the SmartRF board? If you want to make proper current measurement with this board, you have to remove every jumpers: P486, P487, P411 and P408. Keep only the jumpers of BTN_SEL and the RESET signals.