training a model without any weights but just only bias - machine-learning

i was doing some tests using a VGG3 CNN model and i zeroed out all weights and their gradients after every backprop call. i basically allowed only the bias of the model to be trained / updated. what i got was interesting results that i cant per say explain. the accuracy of the model kept on increasing. started off at about 27.12% until after only 10 epochs it reached around 71% accuracy.
this kept me wondering how the accuracy is increasing so significantly without using any weights at all during training. i would love to get some theories and inputs regarding this.
can you actually train a model(not necessarily the best model) without using any weights at all?

If you zero the weights and only use bias then output of the model should be independent of the input. In fact the model only depends on the final layer's bias value. If you implemented it correctly then you should have something akin to a maximum a-priori estimator. I.e. your model predicts the most common class in your training data. That means one of the classes in your training/testing data is overrepresented and your model is always predicting that class.

Related

Why does pre-trained ResNet18 have a higher validation accuracy than training?

For PyTorch's tutorial on performing transfer learning for computer vision (https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html), we can see that there is a higher validation accuracy than training accuracy. Applying the same steps to my own dataset, I see similar results. Why is this the case? Does it have something to do with ResNet 18's architecture?
Assuming there aren't bugs in your code and the train and validation data are in the same domain, then there are a couple reasons why this may occur.
Training loss/acc is computed as the average across an entire training epoch. The network begins the epoch with one set of weights and ends the epoch with a different (hopefully better!) set of weights. During validation you're evaluating everything using only the most recent weights. This means that the comparison between validation and train accuracy is misleading since training accuracy/loss was computed with samples from potentially much worse states of your model. This is usually most noticeable at the start of training or right after the learning rate is adjusted since the network often starts the epoch in a much worse state than it ends. It's also often noticeable when the training data is relatively small (as is the case in your example).
Another difference is the data augmentations used during training that aren't used during validation. During training you randomly crop and flip the training images. While these random augmentations are useful for increasing the ability of your network to generalize they aren't performed during validation because they would diminish performance.
If you were really motivated and didn't mind spending the extra computational power you could get a more meaningful comparison by running the training data back through your network at the end of each epoch using the same data transforms used for validation.
The short answer is that train and validation data are from different distributions, and it's "easier" for model to predict target in validation data then it is for training.
The likely reason for this particular case, as indicated by this answer, is data augmentation during training. This is a way to regularize your model by increasing variability in the training data.
Other architectures can use Dropout (or its modifications), which are deliberately "hurting" training performance, reducing the potential of overfitting.
Notice, that you're using pretrained model, which already contains some information about how to solve classification problem. If your domain is not that different from the data it was trained on, you can expect good performance off-the-shelf.

Decreasing training loss, stable validation loss - is the model overfitting?

Does my model overfit? I would be sure it overfitted, if the validation loss increased heavily, while the training loss decreased. However the validation loss is nearly stable, so I am not sure. Can you please help?
I assume that you're using different hyperparameters? Perhaps save
the parameters and resume with a different set of hyperparameters.
This comment really depends on how you're doing hyperparameter
optimization.
Try with different training/test splits. It might be idiosyncratic.
Especially with so few epochs.
Depending on how costly it is to train the model and evaluate it,
consider bagging your models, akin to how a random forest operates.
In others words, fit your model to many different train/test splits,
and average the model outputs, either in terms of a majority
classification vote, or an averaging of the predicted probabilities.
In this case, I'd err on the side of a slightly overfit model,
because of the way that averaging can mitigate overfitting. But I
wouldn't train to death either, unless you're going to fit very very
many neural nets, and somehow ensure that you're decorrelating them
akin to the method of random subspaces from random forests.

What's a "good" value for the loss function of a DL model like yolo?

I collected ~1500 labelled data and trained with yolo v3, got a training loss of ~10, validation loss ~ 16. Obviously we can use real test data to evaluate the model performance, but I am wondering if there is a way to tell if this training loss = 10 is a "good" one? Or does it indicate I need to use more training data to see if I can push it down to 5 or even less?
Ultimately my question is, for a well-known model with a pre-defined loss function, is there a "good" standard value for the training loss?
thanks.
you need to train your weights until avg loss become 0.0XXXXX. It is minimal requirement to detect object with matching anchor IOU.
Update:28th Nov, 2018
while training object detection model, Loss might be vary sometimes with large data set. but all you need to calculate is Mean Average Precision(MAP) which exactly gave the accuracy criteria of trained model.
./darknet detector map .data .cfg .weights
If your MAP is near to 0.1 i.e. 100%, model performing well.
Follow link to know more about MAP:
https://medium.com/#jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
Your validation loss is a good indicator of if the training loss can further alleviate, I mean i don't have any one-shot solutions ,you will have to tweak Hyper-parameters and check on the val test and iterate.You can also get a nice idea by looking at the loss curve, was it decreasing when you stopped training or was it flat, you can get a sense of how the training has progressed and make changes accordingly.GoodLuck

How do neural networks learn functions instead of memorize them?

For a class project, I designed a neural network to approximate sin(x), but ended up with a NN that just memorized my function over the data points I gave it. My NN took in x-values with a batch size of 200. Each x-value was multiplied by 200 different weights, mapping to 200 different neurons in my first layer. My first hidden layer contained 200 neurons, each one a linear combination of the x-values in the batch. My second hidden layer also contained 200 neurons, and my loss function was computed between the 200 neurons in my second layer and the 200 values of sin(x) that the input mapped to.
The problem is, my NN perfectly "approximated" sin(x) with 0 loss, but I know it wouldn't generalize to other data points.
What did I do wrong in designing this neural network, and how can I avoid memorization and instead design my NN's to "learn" about the patterns in my data?
It is same with any machine learning algorithm. You have a dataset based on which you try to learn "the" function f(x), which actually generated the data. In real life datasets, it is impossible to get the original function from the data, and therefore we approximate it using something g(x).
The main goal of any machine learning algorithm is to predict unseen data as best as possible using the function g(x).
Given a dataset D you can always train a model, which will perfectly classify all the datapoints (you can use a hashmap to get 0 error on the train set), but which is overfitting or memorization.
To avoid such things, you yourself have to make sure that the model does not memorise and learns the function. There are a few things which can be done. I am trying to write them down in an informal way (with links).
Train, Validation, Test
If you have large enough dataset, use Train, Validation, Test splits. Split the dataset in three parts. Typically 60%, 20% and 20% for Training, Validation and Test, respectively. (These numbers can vary based on need, also in case of imbalanced data, check how to get stratified partitions which preserve the class ratios in every split). Next, forget about the Test partition, keep it somewhere safe, don't touch it. Your model, will be trained using the Training partition. Once you have trained the model, evaluate the performance of the model using the Validation set. Then select another set of hyper-parameter configuration for your model (eg. number of hidden layer, learaning algorithm, other parameters etc.) and then train the model again, and evaluate based on Validation set. Keep on doing this for several such models. Then select the model, which got you the best validation score.
The role of validation set here is to check what the model has learned. If the model has overfit, then the validation scores will be very bad, and therefore in the above process you will discard those overfit models. But keep in mind, although you did not use the Validation set to train the model, directly, but the Validation set was used indirectly to select the model.
Once you have selected a final model based on Validation set. Now take out your Test set, as if you just got new dataset from real life, which no one has ever seen. The prediction of the model on this Test set will be an indication how well your model has "learned" as it is now trying to predict datapoints which it has never seen (directly or indirectly).
It is key to not go back and tune your model based on the Test score. This is because once you do this, the Test set will start contributing to your mode.
Crossvalidation and bootstrap sampling
On the other hand, if your dataset is small. You can use bootstrap sampling, or k-fold cross-validation. These ideas are similar. For example, for k-fold cross-validation, if k=5, then you split the dataset in 5 parts (also be carefull about stratified sampling). Let's name the parts a,b,c,d,e. Use the partitions [a,b,c,d] to train and get the prediction scores on [e] only. Next, use the partitions [a,b,c,e] and use the prediction scores on [d] only, and continue 5 times, where each time, you keep one partition alone and train the model with the other 4. After this, take an average of these scores. This is indicative of that your model might perform if it sees new data. It is also a good practice to do this multiple times and perform an average. For example, for smaller datasets, perform a 10 time 10-folds cross-validation, which will give a pretty stable score (depending on the dataset) which will be indicative of the prediction performance.
Bootstrap sampling is similar, but you need to sample the same number of datapoints (depends) with replacement from the dataset and use this sample to train. This set will have some datapoints repeated (as it was a sample with replacement). Then use the missing datapoins from the training dataset to evaluate the model. Perform this multiple times and average the performance.
Others
Other ways are to incorporate regularisation techniques in the classifier cost function itself. For example in Support Vector Machines, the cost function enforces conditions such that the decision boundary maintains a "margin" or a gap between two class regions. In neural networks one can also do similar things (although it is not same as in SVM).
In neural network you can use early stopping to stop the training. What this does, is train on the Train dataset, but at each epoch, it evaluates the performance on the Validation dataset. If the model starts to overfit from a specific epoch, then the error for Training dataset will keep on decreasing, but the error of the Validation dataset will start increasing, indicating that your model is overfitting. Based on this one can stop training.
A large dataset from real world tends not to overfit too much (citation needed). Also, if you have too many parameters in your model (to many hidden units and layers), and if the model is unnecessarily complex, it will tend to overfit. A model with lesser pameter will never overfit (though can underfit, if parameters are too low).
In the case of you sin function task, the neural net has to overfit, as it is ... the sin function. These tests can really help debug and experiment with your code.
Another important note, if you try to do a Train, Validation, Test, or k-fold crossvalidation on the data generated by the sin function dataset, then splitting it in the "usual" way will not work as in this case we are dealing with a time-series, and for those cases, one can use techniques mentioned here
First of all, I think it's a great project to approximate sin(x). It would be great if you could share the snippet or some additional details so that we could pin point the exact problem.
However, I think that the problem is that you are overfitting the data hence you are not able to generalize well to other data points.
Few tricks that might work,
Get more training points
Go for regularization
Add a test set so that you know whether you are overfitting or not.
Keep in mind that 0 loss or 100% accuracy is mostly not good on training set.

Pre-randomization before random forest training in Scikit-learn

I am getting a surprisingly significant performance boost (+10% cross-validation accuracy gain) with sklearn.ensemble.RandomForestClassifier just by virtue of pre-randomizing the training set.
This is very puzzling to me, since
(a) RandomForestClassifier supposedly randomized the training data anyway; and
(b) Why would the order of example matter so much anyway?
Any words of wisdom?
I have got the same issue and posted a question, which luckily got resolved.
In my case it's because the data are put in order, and I'm using K-fold cross-validation without shuffling when doing the test-train split. This means that the model is only trained on a chunk of adjacent samples with certain pattern.
An extreme example would be, if you have 50 rows of sample all of class A, followed by 50 rows of sample all of class B, and you manually do a train-test split right in the middle. The model is now trained with all samples of class A, but tested with all samples of class B, hence the test accuracy will be 0.
In scikit, the train_test_split do the shuffling by default, while the KFold class doesn't. So you should do one of the following according to your context:
Shuffle the data first
Use train_test_split with shuffle=True (again, this is the default)
Use KFold and remember to set shuffle=True
Ordering of the examples should not affect RF performance at all. Note Rf performance can vary by 1-2% across runs anyway. Are you keeping cross-validation set separately before training?(Just ensuring this is not because cross-validation set is different every time). Also by randomizing I assume you mean changing the order of the examples.
Also you can check the Out of Bag accuracy of the classifier in both cases for the training set itself, you don't need a separate cross-validation set for RF.
During the training of Random Forest, the data for training each individual tree is obtained by sampling by replacement from the training data, thus each training sample is not used for roughly 1/3 of the trees. We can use the votes of these 1/3 trees to predict the out of box probability of the Random forest classification. Thus with OOB accuracy you just need a training set, and not validation or test data to predict performance on unseen data. Check Out of Bag error at https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm for further study.

Resources