We use LDA for topic-modelling in production. I was wondering if there are any metrics which we could use to monitor the quality of this model to understand when model starts to perform poorly and we need to retrain it (for example,if we have too many new topics).
We consider to calculate the ratio of number of words from top-topic(topic which has the highest probability for a document) corpus,which were found in the document, to the general number of words(after all processing) in the document with some theshold, but may be someone can share their experience.
You can calculate its coherence value and compare it with previous one. See Michael Roeder, Andreas Both and Alexander Hinneburg: “Exploring the space of topic coherence measures, and if you're using gensim with python, check its implementation at CoherenceModel.
Related
I have a twitter-like(another micro blog) data set with 1.6 million datapoints and tried to predict the its retweet numbers based on its content. I extracted its keyword and use the keywords as the bag of words feature. Then I got 1.2 million dimension feature. The feature vector is very sparse,usually only ten dimension in one data point. And I use SVR to do the regression. Now it has taken 2 days. I think the training time might take quite a long time. I don't know if I do this task like this is normal. Is there any way or is it necessary to optimize this problem?
BTW. If in this case , I don't use any kernel and the machine is 32GB RAM and i-7 16 cores. How long the training time will be in estimation? I used the lib pyml.
You need to find a dimensionality reduction approach that works for your problem.
I've worked on a similar problem to yours and I found that Information Gain worked well, but there are others.
I found this paper (Fabrizio Sebastiani, Machine Learning in Automated Text Categorization, ACM Computing Surveys, Vol. 34, No.1, pp.1-47, 2002) to be a good theoretical treatment of text classification, including feature reduction by a variety of methods from the simple (Term Frequency) to the complex (Information-Theoretic).
These functions try to capture the intuition that the best terms for ci are the
ones distributed most differently in the sets of positive and negative examples of
ci. However, interpretations of this principle vary across different functions. For instance, in the experimental sciences χ2 is used to measure how the results of an observation differ (i.e., are independent) from the results expected according to an initial hypothesis (lower values indicate lower dependence). In DR we measure how independent tk and ci are. The terms tk with the lowest value for χ2(tk, ci) are thus the most independent from ci; since we are interested in the terms which are not, we select the terms for which χ2(tk, ci) is highest.
These techniques help you choose terms that are most useful in separating the training documents into the given classes; the terms with the highest predictive value for your problem.
I've been successful using Information Gain for feature reduction and found this paper (Entropy based feature selection for text categorization Largeron, Christine and Moulin, Christophe and Géry, Mathias - SAC - Pages 924-928 2011) to be a very good practical guide.
Here the authors present a simple formulation of entropy-based feature selection that's useful for implementation in code:
Given a term tj and a category ck, ECCD(tj , ck) can be
computed from a contingency table. Let A be the number
of documents in the category containing tj ; B, the number
of documents in the other categories containing tj ; C, the
number of documents of ck which do not contain tj and D,
the number of documents in the other categories which do
not contain tj (with N = A + B + C + D):
Using this contingency table, Information Gain can be estimated by:
This approach is easy to implement and provides very good Information-Theoretic feature reduction.
You needn't use a single technique either; you can combine them. Ter-Frequency is simple, but can also be effective. I've combined the Information Gain approach with Term Frequency to do feature selection successfully. You should experiment with your data to see which technique or techniques work most effectively.
At first you can simply remove all words with high frequency and all words with low frequency, because both of them don't tell you much about content of a text, then you have to do a word-stemming.
After that you can try to reduce dimensionality of your space, with Feature hashing, or some more advance dimensionality reduction trick (PCA, ICA), or even both of them.
I need some point of view to know if what I am doing is good or wrong or if there is better way to do it.
I have 10 000 elements. For each of them I have like 500 features.
I am looking to measure the separability between 2 sets of those elements. (I already know those 2 groups I don't try to find them)
For now I am using svm. I train the svm on 2000 of those elements, then I look at how good the score is when I test on the 8000 other elements.
Now I would like to now which features maximize this separation.
My first approach was to test each combination of feature with the svm and follow the score given by the svm. If the score is good those features are relevant to separate those 2 sets of data.
But this takes too much time. 500! possibility.
The second approach was to remove one feature and see how much the score is impacted. If the score changes a lot that feature is relevant. This is faster, but I am not sure if it is right. When there is 500 feature removing just one feature don't change a lot the final score.
Is this a correct way to do it?
Have you tried any other method ? Maybe you can try decision tree or random forest, it would give out your best features based on entropy gain. Can i assume all the features are independent of each other. if not please remove those as well.
Also for Support vectors , you can try to check out this paper:
http://axon.cs.byu.edu/Dan/778/papers/Feature%20Selection/guyon2.pdf
But it's based more on linear SVM.
You can do statistical analysis on the features to get indications of which terms best separate the data. I like Information Gain, but there are others.
I found this paper (Fabrizio Sebastiani, Machine Learning in Automated Text Categorization, ACM Computing Surveys, Vol. 34, No.1, pp.1-47, 2002) to be a good theoretical treatment of text classification, including feature reduction by a variety of methods from the simple (Term Frequency) to the complex (Information-Theoretic).
These functions try to capture the intuition that the best terms for ci are the
ones distributed most differently in the sets of positive and negative examples of
ci. However, interpretations of this principle vary across different functions. For instance, in the experimental sciences χ2 is used to measure how the results of an observation differ (i.e., are independent) from the results expected according to an initial hypothesis (lower values indicate lower dependence). In DR we measure how independent tk and ci are. The terms tk with the lowest value for χ2(tk, ci) are thus the most independent from ci; since we are interested in the terms which are not, we select the terms for which χ2(tk, ci) is highest.
These techniques help you choose terms that are most useful in separating the training documents into the given classes; the terms with the highest predictive value for your problem. The features with the highest Information Gain are likely to best separate your data.
I've been successful using Information Gain for feature reduction and found this paper (Entropy based feature selection for text categorization Largeron, Christine and Moulin, Christophe and Géry, Mathias - SAC - Pages 924-928 2011) to be a very good practical guide.
Here the authors present a simple formulation of entropy-based feature selection that's useful for implementation in code:
Given a term tj and a category ck, ECCD(tj , ck) can be
computed from a contingency table. Let A be the number
of documents in the category containing tj ; B, the number
of documents in the other categories containing tj ; C, the
number of documents of ck which do not contain tj and D,
the number of documents in the other categories which do
not contain tj (with N = A + B + C + D):
Using this contingency table, Information Gain can be estimated by:
This approach is easy to implement and provides very good Information-Theoretic feature reduction.
You needn't use a single technique either; you can combine them. Term-Frequency is simple, but can also be effective. I've combined the Information Gain approach with Term Frequency to do feature selection successfully. You should experiment with your data to see which technique or techniques work most effectively.
If you want a single feature to discriminate your data, use a decision tree, and look at the root node.
SVM by design looks at combinations of all features.
Have you thought about Linear Discriminant Analysis (LDA)?
LDA aims at discovering a linear combination of features that maximizes the separability. The algorithm works by projecting your data in a space where the variance within classes is minimum and the one between classes is maximum.
You can use it reduce the number of dimensions required to classify, and also use it as a linear classifier.
However with this technique you would lose the original features with their meaning, and you may want to avoid that.
If you want more details I found this article to be a good introduction.
I am trying to do document classification. But I am really confused between feature selections and tf-idf. Are they the same or two different ways of doing classification?
Hope somebody can tell me? I am not really sure that my question will make sense to you guys.
Yes, you are confusion a lot of things.
Feature selection is the abstract term for choosing features (0 or 1). Stopword removal can be seen as feature selection.
TF is one method of extracting features from text: counting words.
IDF is one method of assigning weights to features.
Neither of them is classification... they are popular for text classification, but they are even more popular for information retrieval, which is not classification...
However, many classifiers work on numeric data, so the common process is to 1. Extract features (e.g.: TF) 2. Select features (e.g. remove stopwords) 3. Weight features (e.g. IDF) 4. Train a classifier on the resulting numerical vectors. 5. Predict the classes of new/unlabeled documents.
Taking a look at this explanation may help a lot when it comes to understanding text classifiers.
TF-IDF is a good way to find a document that answers a given query, but it does not necessarily assigns documents with classes.
Examples that may be helpful:
1) You have a bunch of documents with subjects ranging from politics, economics, computer science and the arts. The documents belonging to each subject are separated into the appropriate directories for each subject (you have a labeled dataset). Now, you received a new document whose subject you do not know. In which directory should it be stored? A classifier can answer this question from the documents that are already labeled.
2) Now, you received a query regarding computer science. For instance, you received the query "Good methods for finding textual similarity". Which document in the directory of computer science can provide the best response to that query? TF-IDF would be a good approach to figure that out.
So, when you are classifying documents, you are trying to make a decision about whether a document is a member of a particular class (like, say, 'about birds' or 'not about birds').
Classifiers predict the value of the class given a set of features. A good set of features will be highly discriminative - they will tell you a lot about whether the document is of one class or another.
Tf-idf (term frequency inverse document frequency) is a particular feature that seems to be discriminative for document classification tasks. There are others, like word counts (tf or term frequency) or whether a regexp matches the text or what have you.
Feature selection is the task of selecting good (discriminative) features. Tfidf is probably a good feature to select.
I am learning Machine Learning(Linear Regression) from Prof. Andrew's lecture. While listening when to use normal equation vs gradient descent, he says when our features number is very high(like 10E6) then to use gradient descent. Everything is clear to me, but I wonder that can someone give me real life examples where we use such such huge number of features?
For example, in text classification (e.g., email spam filtering), we can use unigrams (bag of words), bigrams, trigrams as features. Depending on the size of the dataset, the number of features can be very large.
List of data sets having large no of attributes:-
1. Daily and Sports Activities Data Set link
2. Farm Ads Data Set link
3. Arcene Data Set link
4. Bag of Words Data Set link
Above are real life examples of data sets having large no. of attributes.
I've got a problem where I've potentially got a huge number of features. Essentially a mountain of data points (for discussion let's say it's in the millions of features). I don't know what data points are useful and what are irrelevant to a given outcome (I guess 1% are relevant and 99% are irrelevant).
I do have the data points and the final outcome (a binary result). I'm interested in reducing the feature set so that I can identify the most useful set of data points to collect to train future classification algorithms.
My current data set is huge, and I can't generate as many training examples with the mountain of data as I could if I were to identify the relevant features, cut down how many data points I collect, and increase the number of training examples. I expect that I would get better classifiers with more training examples given fewer feature data points (while maintaining the relevant ones).
What machine learning algorithms should I focus on to, first,
identify the features that are relevant to the outcome?
From some reading I've done it seems like SVM provides weighting per feature that I can use to identify the most highly scored features. Can anyone confirm this? Expand on the explanation? Or should I be thinking along another line?
Feature weights in a linear model (logistic regression, naive Bayes, etc) can be thought of as measures of importance, provided your features are all on the same scale.
Your model can be combined with a regularizer for learning that penalises certain kinds of feature vectors (essentially folding feature selection into the classification problem). L1 regularized logistic regression sounds like it would be perfect for what you want.
Maybe you can use PCA or Maximum entropy algorithm in order to reduce the data set...
You can go for Chi-Square tests or Entropy depending on your data type. Supervized discretization highly reduces the size of your data in a smart way (take a look into Recursive Minimal Entropy Partitioning algorithm proposed by Fayyad & Irani).
If you work in R, the SIS package has a function that will do this for you.
If you want to do things the hard way, what you want to do is feature screening, a massive preliminary dimension reduction before you do feature selection and model selection from a sane-sized set of features. Figuring out what is the sane-size can be tricky, and I don't have a magic answer for that, but you can prioritize what order you'd want to include the features by
1) for each feature, split the data in two groups by the binary response
2) find the Komogorov-Smirnov statistic comparing the two sets
The features with the highest KS statistic are most useful in modeling.
There's a paper "out there" titled "A selctive overview of feature screening for ultrahigh-dimensional data" by Liu, Zhong, and Li, I'm sure a free copy is floating around the web somewhere.
4 years later I'm now halfway through a PhD in this field and I want to add that the definition of a feature is not always simple. In the case that your features are a single column in your dataset, the answers here apply quite well.
However, take the case of an image being processed by a convolutional neural network, for example, a feature is not one pixel of the input, rather it's much more conceptual than that. Here's a nice discussion for the case of images:
https://medium.com/#ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721