I was going through this research paper. This paper mentions that:
But upon searching and referring other sources I found that the low rank approximation of a matrix using SVD is given as:
Please explain the approach mentioned in the research paper
They only complicated a bit by splitting the SVD decomposition in the used components and the unused components.
Notice that A = sum(U[:, i:i+1] * s[i] * V[i:i+1,:] for i in range(len(s)),
import numpy as np
A = np.random.rand(10, 15)
U, s, V = np.linalg.svd(A)
assert np.allclose(A, U # np.diag(s) # V.T)
assert np.allclose(A, sum(s[i] * U[:, i:i+1] * V[i:i+1,:]
for i in range(len(s))))
Notice that the left multiplication by U[:, :M].T will project the matrix onto a subspace of the M first left singular vectors. And then left multiplying by U[:,:M] brings the projected value to the original basis.
M=6
assert np.allclose(U[:, :M] # U[:, :M].T # A,
sum(s[i] * U[:, i:i+1] * V[i:i+1,:] for i in range(M)))
Related
I've been implementing VAE and IWAE models on the caltech silhouettes dataset and am having an issue where the VAE outperforms IWAE by a modest margin (test LL ~120 for VAE, ~133 for IWAE!). I don't believe this should be the case, according to both theory and experiments produced here.
I'm hoping someone can find some issue in how I'm implementing that's causing this to be the case.
The network I'm using to approximate q and p is the same as that detailed in the appendix of the paper above. The calculation part of the model is below:
data_k_vec = data.repeat_interleave(K,0) # Generate K samples (in my case K=50 is producing this behavior)
mu, log_std = model.encode(data_k_vec)
z = model.reparameterize(mu, log_std) # z = mu + torch.exp(log_std)*epsilon (epsilon ~ N(0,1))
decoded = model.decode(z) # this is the sigmoid output of the model
log_prior_z = torch.sum(-0.5 * z ** 2, 1)-.5*z.shape[1]*T.log(torch.tensor(2*np.pi))
log_q_z = compute_log_probability_gaussian(z, mu, log_std) # Definitions below
log_p_x = compute_log_probability_bernoulli(decoded,data_k_vec)
if model_type == 'iwae':
log_w_matrix = (log_prior_z + log_p_x - log_q_z).view(-1, K)
elif model_type =='vae':
log_w_matrix = (log_prior_z + log_p_x - log_q_z).view(-1, 1)*1/K
log_w_minus_max = log_w_matrix - torch.max(log_w_matrix, 1, keepdim=True)[0]
ws_matrix = torch.exp(log_w_minus_max)
ws_norm = ws_matrix / torch.sum(ws_matrix, 1, keepdim=True)
ws_sum_per_datapoint = torch.sum(log_w_matrix * ws_norm, 1)
loss = -torch.sum(ws_sum_per_datapoint) # value of loss that gets returned to training function. loss.backward() will get called on this value
Here are the likelihood functions. I had to fuss with the bernoulli LL in order to not get nan during training
def compute_log_probability_gaussian(obs, mu, logstd, axis=1):
return torch.sum(-0.5 * ((obs-mu) / torch.exp(logstd)) ** 2 - logstd, axis)-.5*obs.shape[1]*T.log(torch.tensor(2*np.pi))
def compute_log_probability_bernoulli(theta, obs, axis=1): # Add 1e-18 to avoid nan appearances in training
return torch.sum(obs*torch.log(theta+1e-18) + (1-obs)*torch.log(1-theta+1e-18), axis)
In this code there's a "shortcut" being used in that the row-wise importance weights are being calculated in the model_type=='iwae' case for the K=50 samples in each row, while in the model_type=='vae' case the importance weights are being calculated for the single value left in each row, so that it just ends up calculating a weight of 1. Maybe this is the issue?
Any and all help is huge - I thought that addressing the nan issue would permanently get me out of the weeds but now I have this new problem.
EDIT:
Should add that the training scheme is the same as that in the paper linked above. That is, for each of i=0....7 rounds train for 2**i epochs with a learning rate of 1e-4 * 10**(-i/7)
The K-sample importance weighted ELBO is
$$ \textrm{IW-ELBO}(x,K) = \log \sum_{k=1}^K \frac{p(x \vert z_k) p(z_k)}{q(z_k;x)}$$
For the IWAE there are K samples originating from each datapoint x, so you want to have the same latent statistics mu_z, Sigma_z obtained through the amortized inference network, but sample multiple z K times for each x.
So its computationally wasteful to compute the forward pass for data_k_vec = data.repeat_interleave(K,0), you should compute the forward pass once for each original datapoint, then repeat the statistics output by the inference network for sampling:
mu = torch.repeat_interleave(mu,K,0)
log_std = torch.repeat_interleave(log_std,K,0)
Then sample z_k. And now repeat your datapoints data_k_vec = data.repeat_interleave(K,0), and use the resulting tensor to efficiently evaluate the conditional p(x |z_k) for each importance sample z_k.
Note you may also want to use the logsumexp operation when calculating the IW-ELBO for numerical stability. I can't quite figure out what's going on with the log_w_matrix calculation in your post, but this is what I would do:
log_pz = ...
log_qzCx = ....
log_pxCz = ...
log_iw = log_pxCz + log_pz - log_qzCx
log_iw = log_iw.reshape(-1, K)
iwelbo = torch.logsumexp(log_iw, dim=1) - np.log(K)
EDIT: Actually after thinking about it a bit and using the score function identity, you can interpret the IWAE gradient as an importance weighted estimate of the standard single-sample gradient, so the method in the OP for calculation of the importance weights is equivalent (if a bit wasteful), provided you place a stop_gradient operator around the normalized importance weights, which you call w_norm. So I the main problem is the absence of this stop_gradient operator.
I'm in a situation where I need to train a model to predict a scalar value, and it's important to have the predicted value be in the same direction as the true value, while the squared error being minimum.
What would be a good choice of loss function for that?
For example:
Let's say the predicted value is -1 and the true value is 1. The loss between the two should be a lot greater than the loss between 3 and 1, even though the squared error of (3, 1) and (-1, 1) is equal.
Thanks a lot!
This turned out to be a really interesting question - thanks for asking it! First, remember that you want your loss functions to be defined entirely of differential operations, so that you can back-propagation though it. This means that any old arbitrary logic won't necessarily do. To restate your problem: you want to find a differentiable function of two variables that increases sharply when the two variables take on values of different signs, and more slowly when they share the same sign. Additionally, you want some control over how sharply these values increase, relative to one another. Thus, we want something with two configurable constants. I started constructing a function that met these needs, but then remembered one you can find in any high school geometry text book: the elliptic paraboloid!
The standard formulation doesn't meet the requirement of sign agreement symmetry, so I had to introduce a rotation. The plot above is the result. Note that it increases more sharply when the signs don't agree, and less sharply when they do, and that the input constants controlling this behaviour are configurable. The code below is all that was needed to define and plot the loss function. I don't think I've ever used a geometric form as a loss function before - really neat.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
def elliptic_paraboloid_loss(x, y, c_diff_sign, c_same_sign):
# Compute a rotated elliptic parabaloid.
t = np.pi / 4
x_rot = (x * np.cos(t)) + (y * np.sin(t))
y_rot = (x * -np.sin(t)) + (y * np.cos(t))
z = ((x_rot**2) / c_diff_sign) + ((y_rot**2) / c_same_sign)
return(z)
c_diff_sign = 4
c_same_sign = 2
a = np.arange(-5, 5, 0.1)
b = np.arange(-5, 5, 0.1)
loss_map = np.zeros((len(a), len(b)))
for i, a_i in enumerate(a):
for j, b_j in enumerate(b):
loss_map[i, j] = elliptic_paraboloid_loss(a_i, b_j, c_diff_sign, c_same_sign)
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y = np.meshgrid(a, b)
surf = ax.plot_surface(X, Y, loss_map, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
plt.show()
From what I understand, your current loss function is something like:
loss = mean_square_error(y, y_pred)
What you could do, is to add one other component to your loss, being this a component that penalizes negative numbers and does nothing with positive numbers. And you can choose a coefficient for how much you want to penalize it. For that, we can use like a negative shaped ReLU. Something like this:
Let's call "Neg_ReLU" to this component. Then, your loss function will be:
loss = mean_squared_error(y, y_pred) + Neg_ReLU(y_pred)
So for example, if your result is -1, then the total error would be:
mean_squared_error(1, -1) + 1
And if your result is 3, then the total error would be:
mean_squared_error(1, -1) + 0
(See in the above function how Neg_ReLU(3) = 0, and Neg_ReLU(-1) = 1.
If you want to penalize more the negative values, then you can add a coefficient:
coeff_negative_value = 2
loss = mean_squared_error(y, y_pred) + coeff_negative_value * Neg_ReLU
Now the negative values are more penalized.
The ReLU negative function we can build it like this:
tf.nn.relu(tf.math.negative(value))
So summarizing, in the end your total loss will be:
coeff = 1
Neg_ReLU = tf.nn.relu(tf.math.negative(y))
total_loss = mean_squared_error(y, y_pred) + coeff * Neg_ReLU
I am trying to extract Rotation matrix and Translation vector from the essential matrix.
<pre><code>
SVD svd(E,SVD::MODIFY_A);
Mat svd_u = svd.u;
Mat svd_vt = svd.vt;
Mat svd_w = svd.w;
Matx33d W(0,-1,0,
1,0,0,
0,0,1);
Mat_<double> R = svd_u * Mat(W).t() * svd_vt; //or svd_u * Mat(W) * svd_vt;
Mat_<double> t = svd_u.col(2); //or -svd_u.col(2)
</code></pre>
However, when I am using R and T (e.g. to obtain rectified images), the result does not seem to be right(black images or some obviously wrong outputs), even so I used different combination of possible R and T.
I suspected to E. According to the text books, my calculation is right if we have:
E = U*diag(1, 1, 0)*Vt
In my case svd.w which is supposed to be diag(1, 1, 0) [at least in term of a scale], is not so. Here is an example of my output:
svd.w = [21.47903827647813; 20.28555196246256; 5.167099204708699e-010]
Also, two of the eigenvalues of E should be equal and the third one should be zero. In the same case the result is:
eigenvalues of E = 0.0000 + 0.0000i, 0.3143 +20.8610i, 0.3143 -20.8610i
As you see, two of them are complex conjugates.
Now, the questions are:
Is the decomposition of E and calculation of R and T done in a right way?
If the calculation is right, why the internal rules of essential matrix are not satisfied by the results?
If everything about E, R, and T is fine, why the rectified images obtained by them are not correct?
I get E from fundamental matrix, which I suppose to be right. I draw epipolar lines on both the left and right images and they all pass through the related points (for all the 16 points used to calculate the fundamental matrix).
Any help would be appreciated.
Thanks!
I see two issues.
First, discounting the negligible value of the third diagonal term, your E is about 6% off the ideal one: err_percent = (21.48 - 20.29) / 20.29 * 100 . Sounds small, but translated in terms of pixel error it may be an altogether larger amount.
So I'd start by replacing E with the ideal one after SVD decomposition: Er = U * diag(1,1,0) * Vt.
Second, the textbook decomposition admits 4 solutions, only one of which is physically plausible (i.e. with 3D points in front of the camera). You may be hitting one of non-physical ones. See http://en.wikipedia.org/wiki/Essential_matrix#Determining_R_and_t_from_E .
I am trying to teach my SVM algorithm using data of clicks and conversion by people who see the banners. The main problem is that the clicks is around 0.2% of all data so it's big disproportion in it. When I use simple SVM in testing phase it always predict only "view" class and never "click" or "conversion". In average it gives 99.8% right answers (because of disproportion), but it gives 0% right prediction if you check "click" or "conversion" ones. How can you tune the SVM algorithm (or select another one) to take into consideration the disproportion?
The most basic approach here is to use so called "class weighting scheme" - in classical SVM formulation there is a C parameter used to control the missclassification count. It can be changed into C1 and C2 parameters used for class 1 and 2 respectively. The most common choice of C1 and C2 for a given C is to put
C1 = C / n1
C2 = C / n2
where n1 and n2 are sizes of class 1 and 2 respectively. So you "punish" SVM for missclassifing the less frequent class much harder then for missclassification the most common one.
Many existing libraries (like libSVM) supports this mechanism with class_weight parameters.
Example using python and sklearn
print __doc__
import numpy as np
import pylab as pl
from sklearn import svm
# we create 40 separable points
rng = np.random.RandomState(0)
n_samples_1 = 1000
n_samples_2 = 100
X = np.r_[1.5 * rng.randn(n_samples_1, 2),
0.5 * rng.randn(n_samples_2, 2) + [2, 2]]
y = [0] * (n_samples_1) + [1] * (n_samples_2)
# fit the model and get the separating hyperplane
clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(X, y)
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - clf.intercept_[0] / w[1]
# get the separating hyperplane using weighted classes
wclf = svm.SVC(kernel='linear', class_weight={1: 10})
wclf.fit(X, y)
ww = wclf.coef_[0]
wa = -ww[0] / ww[1]
wyy = wa * xx - wclf.intercept_[0] / ww[1]
# plot separating hyperplanes and samples
h0 = pl.plot(xx, yy, 'k-', label='no weights')
h1 = pl.plot(xx, wyy, 'k--', label='with weights')
pl.scatter(X[:, 0], X[:, 1], c=y, cmap=pl.cm.Paired)
pl.legend()
pl.axis('tight')
pl.show()
In particular, in sklearn you can simply turn on the automatic weighting by setting class_weight='auto'.
This paper describes a variety of techniques. One simple (but very bad method for SVM) is just replicating the minority class(s) until you have a balance:
http://www.ele.uri.edu/faculty/he/PDFfiles/ImbalancedLearning.pdf
In every book and example always they show only binary classification (two classes) and new vector can belong to any one class.
Here the problem is I have 4 classes(c1, c2, c3, c4). I've training data for 4 classes.
For new vector the output should be like
C1 80% (the winner)
c2 10%
c3 6%
c4 4%
How to do this? I'm planning to use libsvm (because it most popular). I don't know much about it. If any of you guys used it previously please tell me specific commands I'm supposed to use.
LibSVM uses the one-against-one approach for multi-class learning problems. From the FAQ:
Q: What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?
It is one-against-one. We chose it after doing the following comparison: C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector machines, IEEE Transactions on Neural Networks, 13(2002), 415-425.
"1-against-the rest" is a good method whose performance is comparable to "1-against-1." We do the latter simply because its training time is shorter.
Commonly used methods are One vs. Rest and One vs. One.
In the first method you get n classifiers and the resulting class will have the highest score.
In the second method the resulting class is obtained by majority votes of all classifiers.
AFAIR, libsvm supports both strategies of multiclass classification.
You can always reduce a multi-class classification problem to a binary problem by choosing random partititions of the set of classes, recursively. This is not necessarily any less effective or efficient than learning all at once, since the sub-learning problems require less examples since the partitioning problem is smaller. (It may require at most a constant order time more, e.g. twice as long). It may also lead to more accurate learning.
I'm not necessarily recommending this, but it is one answer to your question, and is a general technique that can be applied to any binary learning algorithm.
Use the SVM Multiclass library. Find it at the SVM page by Thorsten Joachims
It does not have a specific switch (command) for multi-class prediction. it automatically handles multi-class prediction if your training dataset contains more than two classes.
Nothing special compared with binary prediction. see the following example for 3-class prediction based on SVM.
install.packages("e1071")
library("e1071")
data(iris)
attach(iris)
## classification mode
# default with factor response:
model <- svm(Species ~ ., data = iris)
# alternatively the traditional interface:
x <- subset(iris, select = -Species)
y <- Species
model <- svm(x, y)
print(model)
summary(model)
# test with train data
pred <- predict(model, x)
# (same as:)
pred <- fitted(model)
# Check accuracy:
table(pred, y)
# compute decision values and probabilities:
pred <- predict(model, x, decision.values = TRUE)
attr(pred, "decision.values")[1:4,]
# visualize (classes by color, SV by crosses):
plot(cmdscale(dist(iris[,-5])),
col = as.integer(iris[,5]),
pch = c("o","+")[1:150 %in% model$index + 1])
data=load('E:\dataset\scene_categories\all_dataset.mat');
meas = data.all_dataset;
species = data.dataset_label;
[g gn] = grp2idx(species); %# nominal class to numeric
%# split training/testing sets
[trainIdx testIdx] = crossvalind('HoldOut', species, 1/10);
%# 1-vs-1 pairwise models
num_labels = length(gn);
clear gn;
num_classifiers = num_labels*(num_labels-1)/2;
pairwise = zeros(num_classifiers ,2);
row_end = 0;
for i=1:num_labels - 1
row_start = row_end + 1;
row_end = row_start + num_labels - i -1;
pairwise(row_start : row_end, 1) = i;
count = 0;
for j = i+1 : num_labels
pairwise( row_start + count , 2) = j;
count = count + 1;
end
end
clear row_start row_end count i j num_labels num_classifiers;
svmModel = cell(size(pairwise,1),1); %# store binary-classifers
predTest = zeros(sum(testIdx),numel(svmModel)); %# store binary predictions
%# classify using one-against-one approach, SVM with 3rd degree poly kernel
for k=1:numel(svmModel)
%# get only training instances belonging to this pair
idx = trainIdx & any( bsxfun(#eq, g, pairwise(k,:)) , 2 );
%# train
svmModel{k} = svmtrain(meas(idx,:), g(idx), ...
'Autoscale',true, 'Showplot',false, 'Method','QP', ...
'BoxConstraint',2e-1, 'Kernel_Function','rbf', 'RBF_Sigma',1);
%# test
predTest(:,k) = svmclassify(svmModel{k}, meas(testIdx,:));
end
pred = mode(predTest,2); %# voting: clasify as the class receiving most votes
%# performance
cmat = confusionmat(g(testIdx),pred);
acc = 100*sum(diag(cmat))./sum(cmat(:));
fprintf('SVM (1-against-1):\naccuracy = %.2f%%\n', acc);
fprintf('Confusion Matrix:\n'), disp(cmat)
For multi class classification using SVM;
It is NOT (one vs one) and NOT (one vs REST).
Instead learn a two-class classifier where the feature vector is (x, y) where x is data and y is the correct label associated with the data.
The training gap is the Difference between the value for the correct class and the value of the nearest other class.
At Inference choose the "y" that has the maximum
value of (x,y).
y = arg_max(y') W.(x,y') [W is the weight vector and (x,y) is the feature Vector]
Please Visit link:
https://nlp.stanford.edu/IR-book/html/htmledition/multiclass-svms-1.html#:~:text=It%20is%20also%20a%20simple,the%20label%20of%20structural%20SVMs%20.