Hope you are doing well,
I am doing a research paper about wind energy forecasting using deep learning. Where I used 3 neural networks namely: RNN, LSTM, MLP. The results were good, but the thing that I found somewhat strange is the superiority of MLP over LSTM, where GRU achieved the best value than MLP and finally LSTM. It is known that LSTM is often the one that achieves the best values in the time series forecasting. Note that the differences are not very large.
Can this be considered logical, especially in a research paper?
Another question: if a one type of ANN for example GRU performs better than LSTM in one metric and not in another, how can we explain that ?
Thanks
Related
I am trying to use machine learning to predict a dataset. It is a regression problem with 180 input features and 1 continuously-valued output. I try to compare deep neural networks, random forest regression, and linear regression.
As I expect, 3-hidden-layer deep neural networks outperform other two approaches with a root mean square error (RMSE) of 0.1. However, I unexpected to see that random forest even performs worse than linear regression (RMSE 0.29 vs. 0.27). In my expectation, the random forest can discover more complex dependencies between features to decrease error. I have tried to tune the parameters of random forest (number of trees, maximum features, max_depth, etc.). I also tried different K-cross validation, but the performance is still less than linear regression.
I searched online, and one answer says linear regression may perform better if features have a smooth, nearly linear dependence on the covariates. I do not fully get the point because if that is the case, should not deep neural networks give much performance gain?
I am struggling to give an explanation. Under what situation, random forest is worse than linear regression, but deep neural networks can perform much better?
If your features explain linear relation to the target variable then a Linear Model usually performs well than a Random Forest Model. It totally depends on the linear relations between your features.
That said, Linear models are not superior or the Random Forest is any inferior one.
Try scaling and transforming the data using MinMaxScaler() from scikit-learn to see if the linear model improves further
Pro Tips
If linear model is working like a charm you need to ask your self Why? and How? And get into the basics of both the models to understand why it worked on your data. These questions will lead you to feature engineer better. And as a matter of fact, Kaggle Grand Masters do use Linear Models in stacking to get that top 1% score by capturing the linear relations in the dataset.
So at the end of the day, linear models could wonders too.
I am very new to neural networks and was wondering why all of the examples of RNNs, especially char-rnns use the crossentropy loss function as their loss function. I have googled but can't seem to come across any discussions on the function in this context. I have been asked to motivate for its use and look at its advantages and disadvantages so any papers or sources that I could read through would be much appreciated.
Many sequence-to-sequence RNNs, and char-rnn in particular, produce the result by one item at a time, in other words by solving a classification problem at each time step.
Cross-entropy loss is the main choice when doing a classification, no matter if it's a convolutional neural network (example), recurrent neural network (example) or an ordinary feed-forward neural network (example). If you were to write an RNN that solves a regression problem, you'd use a different loss function, such as L2 loss.
All of examples above are using tensorflow and tf.nn.softmax_cross_entropy_with_logits loss.
I understand all the computational steps of training a neural network with gradient descent using forwardprop and backprop, but I'm trying to wrap my head around why they work so much better than logistic regression.
For now all I can think of is:
A) the neural network can learn it's own parameters
B) there are many more weights than simple logistic regression thus allowing for more complex hypotheses
Can someone explain why a neural network works so well in general? I am a relative beginner.
Neural Networks can have a large number of free parameters (the weights and biases between interconnected units) and this gives them the flexibility to fit highly complex data (when trained correctly) that other models are too simple to fit. This model complexity brings with it the problems of training such a complex network and ensuring the resultant model generalises to the examples it’s trained on (typically neural networks require large volumes of training data, that other models don't).
Classically logistic regression has been limited to binary classification using a linear classifier (although multi-class classification can easily be achieved with one-vs-all, one-vs-one approaches etc. and there are kernalised variants of logistic regression that allow for non-linear classification tasks). In general therefore, logistic regression is typically applied to more simple, linearly-separable classification tasks, where small amounts of training data are available.
Models such as logistic regression and linear regression can be thought of as simple multi-layer perceptrons (check out this site for one explanation of how).
To conclude, it’s the model complexity that allows neural nets to solve more complex classification tasks, and to have a broader application (particularly when applied to raw data such as image pixel intensities etc.), but their complexity means that large volumes of training data are required and training them can be a difficult task.
Recently Dr. Naftali Tishby's idea of Information Bottleneck to explain the effectiveness of deep neural networks is making the rounds in the academic circles.
His video explaining the idea (link below) can be rather dense so I'll try to give the distilled/general form of the core idea to help build intuition
https://www.youtube.com/watch?v=XL07WEc2TRI
To ground your thinking, vizualize the MNIST task of classifying the digit in the image. For this, I am only talking about simple fully-connected neural networks (not Convolutional NN as is typically used for MNIST)
The input to a NN contains information about the output hidden inside of it. Some function is needed to transform the input to the output form. Pretty obvious.
The key difference in thinking needed to build better intuition is to think of the input as a signal with "information" in it (I won't go into information theory here). Some of this information is relevant for the task at hand (predicting the output). Think of the output as also a signal with a certain amount of "information". The neural network tries to "successively refine" and compress the input signal's information to match the desired output signal. Think of each layer as cutting away at the unneccessary parts of the input information, and
keeping and/or transforming the output information along the way through the network.
The fully-connected neural network will transform the input information into a form in the final hidden layer, such that it is linearly separable by the output layer.
This is a very high-level and fundamental interpretation of the NN, and I hope it will help you see it clearer. If there are parts you'd like me to clarify, let me know.
There are other essential pieces in Dr.Tishby's work, such as how minibatch noise helps training, and how the weights of a neural network layer can be seen as doing a random walk within the constraints of the problem.
These parts are a little more detailed, and I'd recommend first toying with neural networks and taking a course on Information Theory to help build your understanding.
Consider you have a large dataset and you want to build a binary classification model for that, Now you have two options that you have pointed out
Logistic Regression
Neural Networks ( Consider FFN for now )
Each node in a neural network will be associated with an activation function for example let's choose Sigmoid since Logistic regression also uses sigmoid internally to make decision.
Let's see how the decision of logistic regression looks when applied on the data
See some of the green spots present in the red boundary?
Now let's see the decision boundary of neural network (Forgive me for using a different color)
Why this happens? Why does the decision boundary of neural network is so flexible which gives more accurate results than Logistic regression?
or the question you asked is "Why neural networks works so well ?" is because of it's hidden units or hidden layers and their representation power.
Let me put it this way.
You have a logistic regression model and a Neural network which has say 100 neurons each of Sigmoid activation. Now each neuron will be equivalent to one logistic regression.
Now assume a hundred logistic units trained together to solve one problem versus one logistic regression model. Because of these hidden layers the decision boundary expands and yields better results.
While you are experimenting you can add more number of neurons and see how the decision boundary is changing. A logistic regression is same as a neural network with single neuron.
The above given is just an example. Neural networks can be trained to get very complex decision boundaries
Neural networks allow the person training them to algorithmically discover features, as you pointed out. However, they also allow for very general nonlinearity. If you wish, you can use polynomial terms in logistic regression to achieve some degree of nonlinearity, however, you must decide which terms you will use. That is you must decide a priori which model will work. Neural networks can discover the nonlinear model that is needed.
'Work so well' depends on the concrete scenario. Both of them do essentially the same thing: predicting.
The main difference here is neural network can have hidden nodes for concepts, if it's propperly set up (not easy), using these inputs to make the final decission.
Whereas linear regression is based on more obvious facts, and not side effects. A neural network should de able to make more accurate predictions than linear regression.
Neural networks excel at a variety of tasks, but to get an understanding of exactly why, it may be easier to take a particular task like classification and dive deeper.
In simple terms, machine learning techniques learn a function to predict which class a particular input belongs to, depending on past examples. What sets neural nets apart is their ability to construct these functions that can explain even complex patterns in the data. The heart of a neural network is an activation function like Relu, which allows it to draw some basic classification boundaries like:
Example classification boundaries of Relus
By composing hundreds of such Relus together, neural networks can create arbitrarily complex classification boundaries, for example:
Composing classification boundaries
The following article tries to explain the intuition behind how neural networks work: https://medium.com/machine-intelligence-report/how-do-neural-networks-work-57d1ab5337ce
Before you step into neural network see if you have assessed all aspects of normal regression.
Use this as a guide
and even before you discard normal regression - for curved type of dependencies - you should strongly consider kernels with SVM
Neural networks are defined with an objective and loss function. The only process that happens within a neural net is to optimize for the objective function by reducing the loss function or error. The back propagation helps in finding the optimized objective function and reach our output with an output condition.
From my research, I found three conflicting results:
SVC(kernel="linear") is better
LinearSVC is better
Doesn't matter
Can someone explain when to use LinearSVC vs. SVC(kernel="linear")?
It seems like LinearSVC is marginally better than SVC and is usually more finicky. But if scikit decided to spend time on implementing a specific case for linear classification, why wouldn't LinearSVC outperform SVC?
Mathematically, optimizing an SVM is a convex optimization problem, usually with a unique minimizer. This means that there is only one solution to this mathematical optimization problem.
The differences in results come from several aspects: SVC and LinearSVC are supposed to optimize the same problem, but in fact all liblinear estimators penalize the intercept, whereas libsvm ones don't (IIRC). This leads to a different mathematical optimization problem and thus different results. There may also be other subtle differences such as scaling and default loss function (edit: make sure you set loss='hinge' in LinearSVC). Next, in multiclass classification, liblinear does one-vs-rest by default whereas libsvm does one-vs-one.
SGDClassifier(loss='hinge') is different from the other two in the sense that it uses stochastic gradient descent and not exact gradient descent and may not converge to the same solution. However the obtained solution may generalize better.
Between SVC and LinearSVC, one important decision criterion is that LinearSVC tends to be faster to converge the larger the number of samples is. This is due to the fact that the linear kernel is a special case, which is optimized for in Liblinear, but not in Libsvm.
The actual problem is in the problem with scikit approach, where they call SVM something which is not SVM. LinearSVC is actually minimizing squared hinge loss, instead of just hinge loss, furthermore, it penalizes size of the bias (which is not SVM), for more details refer to other question:
Under what parameters are SVC and LinearSVC in scikit-learn equivalent?
So which one to use? It is purely problem specific. As due to no free lunch theorem it is impossible to say "this loss function is best, period". Sometimes squared loss will work better, sometimes normal hinge.
Most classification algorithms are developed to improve the training speed. However, is there any classifier or algorithm focusing on the decision making speed(low computation complexity and simple realizable structure)? I can get enough training data,and endure the long training time.
There are many methods which classify fast, you could more or less sort models by classification speed in a following way (first ones - the fastest, last- slowest)
Decision Tree (especially with limited depth)
Linear models (linear regression, logistic regression, linear svm, lda, ...) and Naive Bayes
Non-linear models based on explicit data transformation (Nystroem kernel approximation, RVFL, RBFNN, EEM), Kernel methods (such as kernel SVM) and shallow neural networks
Random Forest and other committees
Big Neural Networks (ie. CNN)
KNN with arbitrary distance
Obviously this list is not exhaustive, it just shows some general ideas.
One way of obtaining such model is to build a complex, slow model, then use it as a black box label generator to train a simplier model (but on potentialy infinite training set) - thus getting a fast classifier at the cost of very expensive training. There are many works showing that one can do that for example by training a shallow neural network on outputs of deep nn.
In general classification speed should not be a problem. Some exceptions are algorithms which have a time complexity depending on the number of samples you have for training. One example is k-Nearest-Neighbors which has no training time, but for classification it needs to check all points (if implemented in a naive way). Other examples are all classifiers which work with kernels since they compute the kernel between the current sample and all training samples.
Many classifiers work with a scalar product of the features and a learned coefficient vector. These should be fast enough in almost all cases. Examples are: Logistic regression, linear SVM, perceptrons and many more. See #lejlot's answer for a nice list.
If these are still too slow you might try to reduce the dimension of your feature space first and then try again (this also speeds up training time).
Btw, this question might not be suited for StackOverflow as it is quite broad and recommendation instead of problem oriented. Maybe try https://stats.stackexchange.com/ next time.
I have a decision tree which is represented in the compressed form and which is at least 4 times faster than the actual tree in classifying an unseen instance.