this is the code to reproduce the error:
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from scipy.stats import loguniform
from skopt import BayesSearchCV
from sklearn.datasets import load_iris
import numpy as np
X, y = load_iris(return_X_y=True)
grid = {
'LogisticRegression' : {
'C': loguniform.rvs(0.1, 10000, size = 50),
'solver': ['lbfgs','saga'],
'penalty': ['l2'],
'warm_start': [False, True],
'class_weight' : [None, 'balanced'],
'max_iter': [100, 1000],
'n_jobs': [ 10 ]
},
'RandomForestClassifier' : {
'n_estimators': np.random.randint(5, 200, size=10),
'criterion' : [ 'gini', 'entropy' ],
'max_depth' : np.random.randint(5, 50, size=10),
'min_samples_split': np.random.randint(5, 50, size=10),
'min_samples_leaf': np.random.randint(5, 50, size=10),
'max_features' : loguniform.rvs(0.2, 1.0, size=5),
'n_jobs' : [ 10 ]
}
}
tuner_params = {
'cv': 2,
'n_jobs': 10,
'scoring': 'roc_auc_ovr',
'return_train_score': True,
'refit': True,
'n_iter':3
}
clf = 'LogisticRegression'
search_cv = BayesSearchCV( estimator = eval(clf)(), search_spaces = grid[clf], **tuner_params)
search_cv.fit(X,y)
clf = 'RandomForestClassifier'
search_cv = BayesSearchCV( estimator = eval(clf)(), search_spaces = grid[clf], **tuner_params)
search_cv.fit(X,y)
Using BayesSearchCV on LogisticRegression as classifier gives no error, while using RandomForestClassifier it gives the following error:
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
Input In [8], in <cell line: 2>()
1 search_cv = BayesSearchCV( estimator = eval(clf)(), search_spaces = grid[clf], **tuner_params)
----> 2 search_cv.fit(X,y)
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/searchcv.py:466, in BayesSearchCV.fit(self, X, y, groups, callback, **fit_params)
463 else:
464 self.optimizer_kwargs_ = dict(self.optimizer_kwargs)
--> 466 super().fit(X=X, y=y, groups=groups, **fit_params)
468 # BaseSearchCV never ranked train scores,
469 # but apparently we used to ship this (back-compat)
470 if self.return_train_score:
File ~/.conda/envs/meth/lib/python3.9/site-packages/sklearn/model_selection/_search.py:875, in BaseSearchCV.fit(self, X, y, groups, **fit_params)
869 results = self._format_results(
870 all_candidate_params, n_splits, all_out, all_more_results
871 )
873 return results
--> 875 self._run_search(evaluate_candidates)
877 # multimetric is determined here because in the case of a callable
878 # self.scoring the return type is only known after calling
879 first_test_score = all_out[0]["test_scores"]
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/searchcv.py:512, in BayesSearchCV._run_search(self, evaluate_candidates)
508 while n_iter > 0:
509 # when n_iter < n_points points left for evaluation
510 n_points_adjusted = min(n_iter, n_points)
--> 512 optim_result = self._step(
513 search_space, optimizer,
514 evaluate_candidates, n_points=n_points_adjusted
515 )
516 n_iter -= n_points
518 if eval_callbacks(callbacks, optim_result):
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/searchcv.py:400, in BayesSearchCV._step(self, search_space, optimizer, evaluate_candidates, n_points)
397 """Generate n_jobs parameters and evaluate them in parallel.
398 """
399 # get parameter values to evaluate
--> 400 params = optimizer.ask(n_points=n_points)
402 # convert parameters to python native types
403 params = [[np.array(v).item() for v in p] for p in params]
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/optimizer/optimizer.py:395, in Optimizer.ask(self, n_points, strategy)
393 X = []
394 for i in range(n_points):
--> 395 x = opt.ask()
396 X.append(x)
398 ti_available = "ps" in self.acq_func and len(opt.yi) > 0
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/optimizer/optimizer.py:367, in Optimizer.ask(self, n_points, strategy)
336 """Query point or multiple points at which objective should be evaluated.
337
338 n_points : int or None, default: None
(...)
364
365 """
366 if n_points is None:
--> 367 return self._ask()
369 supported_strategies = ["cl_min", "cl_mean", "cl_max"]
371 if not (isinstance(n_points, int) and n_points > 0):
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/optimizer/optimizer.py:434, in Optimizer._ask(self)
430 if self._n_initial_points > 0 or self.base_estimator_ is None:
431 # this will not make a copy of `self.rng` and hence keep advancing
432 # our random state.
433 if self._initial_samples is None:
--> 434 return self.space.rvs(random_state=self.rng)[0]
435 else:
436 # The samples are evaluated starting form initial_samples[0]
437 return self._initial_samples[
438 len(self._initial_samples) - self._n_initial_points]
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/space/space.py:900, in Space.rvs(self, n_samples, random_state)
897 columns = []
899 for dim in self.dimensions:
--> 900 columns.append(dim.rvs(n_samples=n_samples, random_state=rng))
902 # Transpose
903 return _transpose_list_array(columns)
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/space/space.py:698, in Categorical.rvs(self, n_samples, random_state)
696 return self.inverse_transform([(choices)])
697 elif self.transform_ == "normalize":
--> 698 return self.inverse_transform(list(choices))
699 else:
700 return [self.categories[c] for c in choices]
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/space/space.py:685, in Categorical.inverse_transform(self, Xt)
680 """Inverse transform samples from the warped space back into the
681 original space.
682 """
683 # The concatenation of all transformed dimensions makes Xt to be
684 # of type float, hence the required cast back to int.
--> 685 inv_transform = super(Categorical, self).inverse_transform(Xt)
686 if isinstance(inv_transform, list):
687 inv_transform = np.array(inv_transform)
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/space/space.py:168, in Dimension.inverse_transform(self, Xt)
164 def inverse_transform(self, Xt):
165 """Inverse transform samples from the warped space back into the
166 original space.
167 """
--> 168 return self.transformer.inverse_transform(Xt)
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/space/transformers.py:309, in Pipeline.inverse_transform(self, X)
307 def inverse_transform(self, X):
308 for transformer in self.transformers[::-1]:
--> 309 X = transformer.inverse_transform(X)
310 return X
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/space/transformers.py:216, in LabelEncoder.inverse_transform(self, Xt)
214 else:
215 Xt = np.asarray(Xt)
--> 216 return [
217 self.inverse_mapping_[int(np.round(i))] for i in Xt
218 ]
File ~/.conda/envs/meth/lib/python3.9/site-packages/skopt/space/transformers.py:217, in <listcomp>(.0)
214 else:
215 Xt = np.asarray(Xt)
216 return [
--> 217 self.inverse_mapping_[int(np.round(i))] for i in Xt
218 ]
KeyError: 9
My versions:
python: 3.9.12
sklearn: 1.1.1
skopt: 0.9.0
The same error happen when using XGBClassifier or GradientBoostingClassifier, while there is no error using SVC or KNeighborsClassifier.
I believe that's related to how skopt encodes the hyperparameter space: it seems having identical points generated by your random lists are required to trigger the error, though sometimes it fits regardless. Either there are collisions or it makes the grid to be processed erroneously.
At least the issue stopped reproducing for me after changing all random lists to list(range(...)).
Might be worth a bug report.
Related
I want to develop a sequential model using optimal hyperparameters derived from Keras Tuner. My code raised "Invalid argument: assertion failed: [predictions must be >= 0] [Condition x >= y did not hold element-wise:]" error.
I tried adding +1 or +10 to the entire X_train but still get the same error.
Build the sequential model:
def model_builder(hp):
model = Sequential()
# Tune the number of units in the first Dense layer
# Choose an optimal value between 32-512
hp_units1 = hp.Int('units1', min_value=32, max_value=512, step=32)
hp_units2 = hp.Int('units2', min_value=32, max_value=512, step=32)
hp_units3 = hp.Int('units3', min_value=32, max_value=512, step=32)
model.add(Dense(units=hp_units1, activation='relu'))
model.add(tf.keras.layers.Dense(units=hp_units2, activation='relu'))
model.add(tf.keras.layers.Dense(units=hp_units3, activation='relu'))
model.add(Dense(1, kernel_initializer='normal', activation='linear')) # output layer
# Tune the learning rate for the optimizer
# Choose an optimal value from 0.01, 0.001, or 0.0001
hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])
# Performance visualization callback
performance_viz_cbk = PerformanceVisualizationCallback(
model=model,
test_data=X_test,
image_dir='c:\perorfmance_charts')
# Model summary
model.compile(optimizer=Adam(learning_rate=hp_learning_rate),
loss=SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy', tf.keras.metrics.AUC(), MulticlassTruePositives()])
return model
Hyperparameter tuning
tuner = kt.Hyperband(model_builder,
objective='val_accuracy',
max_epochs=10,
factor=3,
directory='my_dir',
project_name='intro_to_kt')
tuner.search(X_train, y_train, epochs=10, validation_split=0.2)
Traceback:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
/tmp/ipykernel_17/1976310635.py in <module>
----> 1 tuner.search(X_train, y_train, epochs=10, validation_split=0.2)
/opt/conda/lib/python3.7/site-packages/keras_tuner/engine/base_tuner.py in search(self, *fit_args, **fit_kwargs)
177
178 self.on_trial_begin(trial)
--> 179 results = self.run_trial(trial, *fit_args, **fit_kwargs)
180 # `results` is None indicates user updated oracle in `run_trial()`.
181 if results is None:
/opt/conda/lib/python3.7/site-packages/keras_tuner/tuners/hyperband.py in run_trial(self, trial, *fit_args, **fit_kwargs)
382 fit_kwargs["epochs"] = hp.values["tuner/epochs"]
383 fit_kwargs["initial_epoch"] = hp.values["tuner/initial_epoch"]
--> 384 return super(Hyperband, self).run_trial(trial, *fit_args, **fit_kwargs)
385
386 def _build_model(self, hp):
/opt/conda/lib/python3.7/site-packages/keras_tuner/engine/tuner.py in run_trial(self, trial, *args, **kwargs)
292 callbacks.append(model_checkpoint)
293 copied_kwargs["callbacks"] = callbacks
--> 294 obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs)
295
296 histories.append(obj_value)
/opt/conda/lib/python3.7/site-packages/keras_tuner/engine/tuner.py in _build_and_fit_model(self, trial, *args, **kwargs)
220 hp = trial.hyperparameters
221 model = self._try_build(hp)
--> 222 results = self.hypermodel.fit(hp, model, *args, **kwargs)
223 return tuner_utils.convert_to_metrics_dict(
224 results, self.oracle.objective, "HyperModel.fit()"
/opt/conda/lib/python3.7/site-packages/keras_tuner/engine/hypermodel.py in fit(self, hp, model, *args, **kwargs)
135 If return a float, it should be the `objective` value.
136 """
--> 137 return model.fit(*args, **kwargs)
138
139
/opt/conda/lib/python3.7/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1182 _r=1):
1183 callbacks.on_train_batch_begin(step)
-> 1184 tmp_logs = self.train_function(iterator)
1185 if data_handler.should_sync:
1186 context.async_wait()
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
883
884 with OptionalXlaContext(self._jit_compile):
--> 885 result = self._call(*args, **kwds)
886
887 new_tracing_count = self.experimental_get_tracing_count()
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
948 # Lifting succeeded, so variables are initialized and we can run the
949 # stateless function.
--> 950 return self._stateless_fn(*args, **kwds)
951 else:
952 _, _, _, filtered_flat_args = \
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
3038 filtered_flat_args) = self._maybe_define_function(args, kwargs)
3039 return graph_function._call_flat(
-> 3040 filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access
3041
3042 #property
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _call_flat(self, args, captured_inputs, cancellation_manager)
1962 # No tape is watching; skip to running the function.
1963 return self._build_call_outputs(self._inference_function.call(
-> 1964 ctx, args, cancellation_manager=cancellation_manager))
1965 forward_backward = self._select_forward_and_backward_functions(
1966 args,
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in call(self, ctx, args, cancellation_manager)
594 inputs=args,
595 attrs=attrs,
--> 596 ctx=ctx)
597 else:
598 outputs = execute.execute_with_cancellation(
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
58 ctx.ensure_initialized()
59 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 60 inputs, attrs, num_outputs)
61 except core._NotOkStatusException as e:
62 if name is not None:
InvalidArgumentError: 2 root error(s) found.
(0) Invalid argument: assertion failed: [predictions must be >= 0] [Condition x >= y did not hold element-wise:] [x (sequential/dense_3/BiasAdd:0) = ] [[-1.17921221][-1.64039445][-1.71617472]...] [y (Cast_8/x:0) = ] [0]
[[{{node assert_greater_equal/Assert/AssertGuard/else/_1/assert_greater_equal/Assert/AssertGuard/Assert}}]]
(1) Invalid argument: assertion failed: [predictions must be >= 0] [Condition x >= y did not hold element-wise:] [x (sequential/dense_3/BiasAdd:0) = ] [[-1.17921221][-1.64039445][-1.71617472]...] [y (Cast_8/x:0) = ] [0]
[[{{node assert_greater_equal/Assert/AssertGuard/else/_1/assert_greater_equal/Assert/AssertGuard/Assert}}]]
[[assert_less_equal/Assert/AssertGuard/pivot_f/_13/_41]]
0 successful operations.
0 derived errors ignored. [Op:__inference_train_function_7509]
Function call stack:
train_function -> train_function
Sample data:
X_train
array([[7.97469882, 3.5471509 , 5.67233186, ..., 5.40341065, 3.16356072,
4.62657322],
[4.5390077 , 5.19247562, 5.21946796, ..., 4.12139197, 5.62828788,
4.31792717],
[5.83576307, 6.42946189, 4.85759085, ..., 5.26563348, 5.48022682,
5.29933021],
[4.58240518, 5.02457724, 6.1146384 , ..., 5.47847468, 6.62666587,
5.77328054],
[4.51602713, 5.17875946, 4.57102455, ..., 4.15622882, 5.48888824,
4.88704 ]])
y_train
array([[1],
[3],
[1],
[0],
[3]])
I've recently watched a YouTube (DataSchool) video where the guy used only 3 columns from the Titanic dataset and made a pipeline. I wanted to add more columns to get better accuracy so I added Age and Fare.
I think it's probably because of the values of Age and Fare that I'm getting this error when I perform cross_val_score
columns_trans = make_column_transformer(
(OneHotEncoder(), ['Sex', 'Embarked']),
remainder='passthrough')
logreg = LogisticRegression(solver='lbfgs')
pipe = make_pipeline(columns_trans, logreg)
cross_val_score(pipe, X, y, cv=5, scoring='accuracy').mean()
/opt/conda/lib/python3.7/site-packages/sklearn/model_selection/_validation.py:552: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan.
If I remove Age and Fare, everything works fine. I was wondering if the Column Transformer or the make_pipeline had a problem with values like that.
I also tried scaling the values of Fare and Age, then it gave a cross_val_score but failed in pipe.predict() giving an error:
ValueError: Input contains NaN, infinity or a value too large for dtype('float64')
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
/tmp/ipykernel_119/4279568460.py in <module>
----> 1 cross_val_score(pipe, X, y, cv=5, scoring='accuracy', error_score="raise").mean()
/opt/conda/lib/python3.7/site-packages/sklearn/utils/validation.py in inner_f(*args, **kwargs)
70 FutureWarning)
71 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 72 return f(**kwargs)
73 return inner_f
74
/opt/conda/lib/python3.7/site-packages/sklearn/model_selection/_validation.py in cross_val_score(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, error_score)
404 fit_params=fit_params,
405 pre_dispatch=pre_dispatch,
--> 406 error_score=error_score)
407 return cv_results['test_score']
408
/opt/conda/lib/python3.7/site-packages/sklearn/utils/validation.py in inner_f(*args, **kwargs)
70 FutureWarning)
71 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 72 return f(**kwargs)
73 return inner_f
74
/opt/conda/lib/python3.7/site-packages/sklearn/model_selection/_validation.py in cross_validate(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, return_train_score, return_estimator, error_score)
246 return_times=True, return_estimator=return_estimator,
247 error_score=error_score)
--> 248 for train, test in cv.split(X, y, groups))
249
250 zipped_scores = list(zip(*scores))
/opt/conda/lib/python3.7/site-packages/joblib/parallel.py in __call__(self, iterable)
1039 # remaining jobs.
1040 self._iterating = False
-> 1041 if self.dispatch_one_batch(iterator):
1042 self._iterating = self._original_iterator is not None
1043
/opt/conda/lib/python3.7/site-packages/joblib/parallel.py in dispatch_one_batch(self, iterator)
857 return False
858 else:
--> 859 self._dispatch(tasks)
860 return True
861
/opt/conda/lib/python3.7/site-packages/joblib/parallel.py in _dispatch(self, batch)
775 with self._lock:
776 job_idx = len(self._jobs)
--> 777 job = self._backend.apply_async(batch, callback=cb)
778 # A job can complete so quickly than its callback is
779 # called before we get here, causing self._jobs to
/opt/conda/lib/python3.7/site-packages/joblib/_parallel_backends.py in apply_async(self, func, callback)
206 def apply_async(self, func, callback=None):
207 """Schedule a func to be run"""
--> 208 result = ImmediateResult(func)
209 if callback:
210 callback(result)
/opt/conda/lib/python3.7/site-packages/joblib/_parallel_backends.py in __init__(self, batch)
570 # Don't delay the application, to avoid keeping the input
571 # arguments in memory
--> 572 self.results = batch()
573
574 def get(self):
/opt/conda/lib/python3.7/site-packages/joblib/parallel.py in __call__(self)
261 with parallel_backend(self._backend, n_jobs=self._n_jobs):
262 return [func(*args, **kwargs)
--> 263 for func, args, kwargs in self.items]
264
265 def __reduce__(self):
/opt/conda/lib/python3.7/site-packages/joblib/parallel.py in <listcomp>(.0)
261 with parallel_backend(self._backend, n_jobs=self._n_jobs):
262 return [func(*args, **kwargs)
--> 263 for func, args, kwargs in self.items]
264
265 def __reduce__(self):
/opt/conda/lib/python3.7/site-packages/sklearn/model_selection/_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, return_estimator, error_score)
529 estimator.fit(X_train, **fit_params)
530 else:
--> 531 estimator.fit(X_train, y_train, **fit_params)
532
533 except Exception as e:
/opt/conda/lib/python3.7/site-packages/sklearn/pipeline.py in fit(self, X, y, **fit_params)
333 if self._final_estimator != 'passthrough':
334 fit_params_last_step = fit_params_steps[self.steps[-1][0]]
--> 335 self._final_estimator.fit(Xt, y, **fit_params_last_step)
336
337 return self
/opt/conda/lib/python3.7/site-packages/sklearn/linear_model/_logistic.py in fit(self, X, y, sample_weight)
1415 penalty=penalty, max_squared_sum=max_squared_sum,
1416 sample_weight=sample_weight)
-> 1417 for class_, warm_start_coef_ in zip(classes_, warm_start_coef))
1418
1419 fold_coefs_, _, n_iter_ = zip(*fold_coefs_)
/opt/conda/lib/python3.7/site-packages/joblib/parallel.py in __call__(self, iterable)
1039 # remaining jobs.
1040 self._iterating = False
-> 1041 if self.dispatch_one_batch(iterator):
1042 self._iterating = self._original_iterator is not None
1043
/opt/conda/lib/python3.7/site-packages/joblib/parallel.py in dispatch_one_batch(self, iterator)
857 return False
858 else:
--> 859 self._dispatch(tasks)
860 return True
861
/opt/conda/lib/python3.7/site-packages/joblib/parallel.py in _dispatch(self, batch)
775 with self._lock:
776 job_idx = len(self._jobs)
--> 777 job = self._backend.apply_async(batch, callback=cb)
778 # A job can complete so quickly than its callback is
779 # called before we get here, causing self._jobs to
/opt/conda/lib/python3.7/site-packages/joblib/_parallel_backends.py in apply_async(self, func, callback)
206 def apply_async(self, func, callback=None):
207 """Schedule a func to be run"""
--> 208 result = ImmediateResult(func)
209 if callback:
210 callback(result)
/opt/conda/lib/python3.7/site-packages/joblib/_parallel_backends.py in __init__(self, batch)
570 # Don't delay the application, to avoid keeping the input
571 # arguments in memory
--> 572 self.results = batch()
573
574 def get(self):
/opt/conda/lib/python3.7/site-packages/joblib/parallel.py in __call__(self)
261 with parallel_backend(self._backend, n_jobs=self._n_jobs):
262 return [func(*args, **kwargs)
--> 263 for func, args, kwargs in self.items]
264
265 def __reduce__(self):
/opt/conda/lib/python3.7/site-packages/joblib/parallel.py in <listcomp>(.0)
261 with parallel_backend(self._backend, n_jobs=self._n_jobs):
262 return [func(*args, **kwargs)
--> 263 for func, args, kwargs in self.items]
264
265 def __reduce__(self):
/opt/conda/lib/python3.7/site-packages/sklearn/linear_model/_logistic.py in _logistic_regression_path(X, y, pos_class, Cs, fit_intercept, max_iter, tol, verbose, solver, coef, class_weight, dual, penalty, intercept_scaling, multi_class, random_state, check_input, max_squared_sum, sample_weight, l1_ratio)
762 n_iter_i = _check_optimize_result(
763 solver, opt_res, max_iter,
--> 764 extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
765 w0, loss = opt_res.x, opt_res.fun
766 elif solver == 'newton-cg':
/opt/conda/lib/python3.7/site-packages/sklearn/utils/optimize.py in _check_optimize_result(solver, result, max_iter, extra_warning_msg)
241 " https://scikit-learn.org/stable/modules/"
242 "preprocessing.html"
--> 243 ).format(solver, result.status, result.message.decode("latin1"))
244 if extra_warning_msg is not None:
245 warning_msg += "\n" + extra_warning_msg
AttributeError: 'str' object has no attribute 'decode'
I solved this error by changing solver=lbfgs to solver=liblinear in LogisticRegression()
logreg = LogisticRegression(solver='lbfgs')
to
logreg = LogisticRegression(solver='liblinear')
And for the following error:
ValueError: Input contains NaN, infinity or a value too large for dtype('float64')
It's best to check if your test data contains any null values or strings.
I'm trying to clean my data in jupyterlab by watching several tutorials, but I keep getting one or the other error every time. So I thought I'd come on stack overflow and ask if someone can help me.
This is the csv file I want to clean: https://1drv.ms/u/s!AvOXB8kb-IHBgjaveis044GVoPpk
I'm building a machine learning model so I want to convert all the object values, but I don't know how to.
EDIT: I tried cleaning the data from scratch.
My code input:
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
criminal_data = pd.read_csv('database2.csv')
X = criminal_data.drop(columns=['Agency Type', 'City', 'State',
'Crime Solved'])
y = criminal_data['City']
model = DecisionTreeClassifier()
model.fit(X, y)
criminal_data
The error message:
ValueError Traceback (most recent call
last)
<ipython-input-117-4b6968f9994f> in <module>
6 y = criminal_data['City']
7 model = DecisionTreeClassifier()
----> 8 model.fit(X, y)
9 criminal_data
~\anaconda3\lib\site-packages\sklearn\tree\_classes.py in fit(self, X, y, sample_weight, check_input, X_idx_sorted)
896 """
897
--> 898 super().fit(
899 X, y,
900 sample_weight=sample_weight,
~\anaconda3\lib\site-packages\sklearn\tree\_classes.py in fit(self, X, y, sample_weight, check_input, X_idx_sorted)
154 check_X_params = dict(dtype=DTYPE, accept_sparse="csc")
155 check_y_params = dict(ensure_2d=False, dtype=None)
--> 156 X, y = self._validate_data(X, y,
157 validate_separately=(check_X_params,
158 check_y_params))
~\anaconda3\lib\site-packages\sklearn\base.py in _validate_data(self, X, y, reset, validate_separately, **check_params)
428 # :(
429 check_X_params, check_y_params =
validate_separately
--> 430 X = check_array(X, **check_X_params)
431 y = check_array(y, **check_y_params)
432 else:
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
61 extra_args = len(args) - len(all_args)
62 if extra_args <= 0:
---> 63 return f(*args, **kwargs)
64
65 # extra_args > 0
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in
check_array(array, accept_sparse, accept_large_sparse, dtype, order,
copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
614 array = array.astype(dtype, casting="unsafe",
copy=False)
615 else:
--> 616 array = np.asarray(array, order=order, dtype=dtype)
617 except ComplexWarning as complex_warning:
618 raise ValueError("Complex data not supported\n"
~\anaconda3\lib\site-packages\numpy\core\_asarray.py in asarray(a, dtype, order, like)
100 return _asarray_with_like(a, dtype=dtype, order=order,
like=like)
101
--> 102 return array(a, dtype, copy=False, order=order)
103
104
~\anaconda3\lib\site-packages\pandas\core\generic.py in __array__(self, dtype)
1897
1898 def __array__(self, dtype=None) -> np.ndarray:
-> 1899 return np.asarray(self._values, dtype=dtype)
1900
1901 def __array_wrap__(
~\anaconda3\lib\site-packages\numpy\core\_asarray.py in asarray(a, dtype,
order, like)
100 return _asarray_with_like(a, dtype=dtype, order=order,
like=like)
101
--> 102 return array(a, dtype, copy=False, order=order)
103
104
ValueError: could not convert string to float: 'Anchorage'
You are trying to train your model with some data that is not numerical. Before using the model, you need to do encoding. You can try LabelEncoder for that.
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
for column_name in X.columns:
if X[column_name].dtype == object:
X[column_name] = le.fit_transform(X[column_name])
else:
pass
If you have a combination of different data types in a row. Try below:
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
for column_name in X.columns:
X[column_name] = X[column_name].replace(np.nan, 'none', regex=True)
X[column_name] = le.fit_transform(X[column_name].astype(str))
I was trying to reimplement the github tutorial with my own CNN-based model with Keras. But I got an error when evaluating.
from __future__ import absolute_import, division, print_function
import collections
from six.moves import range
import numpy as np
import tensorflow as tf
from tensorflow.python.keras.optimizer_v2 import gradient_descent
from tensorflow_federated import python as tff
emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data()
example_dataset = emnist_train.create_tf_dataset_for_client(
emnist_train.client_ids[0])
NUM_EPOCHS = 10
BATCH_SIZE = 20
SHUFFLE_BUFFER = 500
def preprocess(dataset):
def element_fn(element):
return collections.OrderedDict([
('x', tf.reshape(element['pixels'], [-1])),
('y', tf.reshape(element['label'], [1])),
])
return dataset.repeat(NUM_EPOCHS).map(element_fn).shuffle(
SHUFFLE_BUFFER).batch(BATCH_SIZE)
preprocessed_example_dataset = preprocess(example_dataset)
sample_batch = nest.map_structure(
lambda x: x.numpy(), iter(preprocessed_example_dataset).next())
def make_federated_data(client_data, client_ids):
return [preprocess(client_data.create_tf_dataset_for_client(x))
for x in client_ids]
NUM_CLIENTS = 3
sample_clients = emnist_train.client_ids[0:NUM_CLIENTS]
federated_train_data = make_federated_data(emnist_train, sample_clients)
len(federated_train_data), federated_train_data[0]
def create_compiled_keras_model():
model = tf.keras.models.Sequential([
tf.keras.layers.Reshape((28,28,1), input_shape=(784,)),
tf.keras.layers.Conv2D(32, kernel_size=(5,5), activation="relu", padding = "same", strides = 1),
tf.keras.layers.MaxPooling2D(pool_size=2, strides=2, padding='valid'),
tf.keras.layers.Conv2D(64, kernel_size=(5,5), activation="relu", padding = "same", strides = 1),
tf.keras.layers.MaxPooling2D(pool_size=2, strides=2, padding='valid'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax"),
])
def loss_fn(y_true, y_pred):
return tf.reduce_mean(tf.keras.losses.sparse_categorical_crossentropy(
y_true, y_pred))
model.compile(
loss=loss_fn,
optimizer=gradient_descent.SGD(learning_rate=0.02),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])
return model
def model_fn():
keras_model = create_compiled_keras_model()
return tff.learning.from_compiled_keras_model(keras_model, sample_batch)
iterative_process = tff.learning.build_federated_averaging_process(model_fn)
state = iterative_process.initialize()
for round_num in range(1,10):
state, metrics = iterative_process.next(state, federated_train_data)
print('round {:2d}, metrics={}'.format(round_num, metrics))
##Evaluation of the model
#This function doesn't work
evaluation = tff.learning.build_federated_evaluation(model_fn)
federated_test_data = make_federated_data(emnist_test, sample_clients)
test_metrics = evaluation(state.model, federated_test_data)
I expect the evaluation of the test data, but the actual output is the following error:
---------------------------------------------------------------------------
_FallbackException Traceback (most recent call last)
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow/python/ops/gen_functional_ops.py in stateful_partitioned_call(args, Tout, f, config, config_proto, executor_type, name)
482 "Tout", Tout, "f", f, "config", config, "config_proto", config_proto,
--> 483 "executor_type", executor_type)
484 return _result
_FallbackException: This function does not handle the case of the path where all inputs are not already EagerTensors.
During handling of the above exception, another exception occurred:
AttributeError Traceback (most recent call last)
<ipython-input-23-6e9c77f70201> in <module>()
----> 1 evaluation = tff.learning.build_federated_evaluation(model_fn)
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_federated/python/learning/federated_evaluation.py in build_federated_evaluation(model_fn)
83 #tff.federated_computation(
84 tff.FederatedType(model_weights_type, tff.SERVER, all_equal=True),
---> 85 tff.FederatedType(tff.SequenceType(batch_type), tff.CLIENTS))
86 def server_eval(server_model_weights, federated_dataset):
87 client_outputs = tff.federated_map(
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/computation_wrapper.py in <lambda>(fn)
406 args = (args,)
407 arg_type = computation_types.to_type(args[0])
--> 408 return lambda fn: _wrap(fn, arg_type, self._wrapper_fn)
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/computation_wrapper.py in _wrap(fn, parameter_type, wrapper_fn)
94 function_utils.wrap_as_zero_or_one_arg_callable(fn, parameter_type),
95 parameter_type,
---> 96 name=fn_name)
97 py_typecheck.check_type(concrete_fn, function_utils.ConcreteFunction,
98 'value returned by the wrapper')
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/computation_wrapper_instances.py in _federated_computation_wrapper_fn(target_fn, parameter_type, name)
52 parameter_type,
53 ctx_stack,
---> 54 suggested_name=name))
55 return computation_impl.ComputationImpl(target_lambda.proto, ctx_stack)
56
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/federated_computation_utils.py in zero_or_one_arg_fn_to_building_block(fn, parameter_name, parameter_type, context_stack, suggested_name)
73 value_impl.ValueImpl(
74 computation_building_blocks.Reference(
---> 75 parameter_name, parameter_type), context_stack))
76 else:
77 result = fn()
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/function_utils.py in <lambda>(arg)
551 # and to force any parameter bindings to be resolved now.
552 # pylint: disable=unnecessary-lambda,undefined-variable
--> 553 return (lambda fn, at, kt: lambda arg: _unpack_and_call(fn, at, kt, arg))(
554 fn, arg_types, kwarg_types)
555 # pylint: enable=unnecessary-lambda,undefined-variable
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/function_utils.py in _unpack_and_call(fn, arg_types, kwarg_types, arg)
545 name, str(expected_type), str(actual_type)))
546 kwargs[name] = element_value
--> 547 return fn(*args, **kwargs)
548
549 # Deliberate wrapping to isolate the caller from the underlying function
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_federated/python/learning/federated_evaluation.py in server_eval(server_model_weights, federated_dataset)
88 client_eval,
89 [tff.federated_broadcast(server_model_weights), federated_dataset])
---> 90 return model.federated_output_computation(client_outputs.local_outputs)
91
92 return server_eval
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_federated/python/learning/model_utils.py in federated_output_computation(self)
531 #property
532 def federated_output_computation(self):
--> 533 return self._model.federated_output_computation
534
535
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow_federated/python/learning/model_utils.py in federated_output_computation(self)
406 def federated_output_computation(self):
407 metric_variable_type_dict = nest.map_structure(tf.TensorSpec.from_tensor,
--> 408 self.report_local_outputs())
409 federated_local_outputs_type = tff.FederatedType(
410 metric_variable_type_dict, tff.CLIENTS, all_equal=False)
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
314 if not self._created_variables:
315 # If we did not create any variables the trace we have is good enough.
--> 316 return self._concrete_stateful_fn._filtered_call(canon_args, canon_kwds) # pylint: disable=protected-access
317
318 def fn_with_cond(*inner_args, **inner_kwds):
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow/python/eager/function.py in _filtered_call(self, args, kwargs)
382 """
383 return self._call_flat(
--> 384 (t for t in nest.flatten((args, kwargs))
385 if isinstance(
386 t, (ops.Tensor, resource_variable_ops.ResourceVariable))))
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow/python/eager/function.py in _call_flat(self, args)
431 # Only need to override the gradient in graph mode and when we have outputs.
432 if context.executing_eagerly() or not self.outputs:
--> 433 outputs = self._inference_function.call(ctx, args)
434 else:
435 if not self._gradient_name:
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow/python/eager/function.py in call(self, ctx, args)
267 executing_eagerly=executing_eagerly,
268 config=function_call_options.config_proto_serialized,
--> 269 executor_type=function_call_options.executor_type)
270
271 if executing_eagerly:
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow/python/ops/functional_ops.py in partitioned_call(args, f, tout, executing_eagerly, config, executor_type)
1081 outputs = gen_functional_ops.stateful_partitioned_call(
1082 args=args, Tout=tout, f=f, config_proto=config,
-> 1083 executor_type=executor_type)
1084 else:
1085 outputs = gen_functional_ops.partitioned_call(
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow/python/ops/gen_functional_ops.py in stateful_partitioned_call(args, Tout, f, config, config_proto, executor_type, name)
487 return stateful_partitioned_call_eager_fallback(
488 args, Tout=Tout, f=f, config=config, config_proto=config_proto,
--> 489 executor_type=executor_type, name=name, ctx=_ctx)
490 except _core._SymbolicException:
491 pass # Add nodes to the TensorFlow graph.
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow/python/ops/gen_functional_ops.py in stateful_partitioned_call_eager_fallback(args, Tout, f, config, config_proto, executor_type, name, ctx)
548 executor_type = ""
549 executor_type = _execute.make_str(executor_type, "executor_type")
--> 550 _attr_Tin, args = _execute.convert_to_mixed_eager_tensors(args, _ctx)
551 _inputs_flat = list(args)
552 _attrs = ("Tin", _attr_Tin, "Tout", Tout, "f", f, "config", config,
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow/python/eager/execute.py in convert_to_mixed_eager_tensors(values, ctx)
207 def convert_to_mixed_eager_tensors(values, ctx):
208 v = [ops.internal_convert_to_tensor(t, ctx=ctx) for t in values]
--> 209 types = [t._datatype_enum() for t in v] # pylint: disable=protected-access
210 return types, v
211
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow/python/eager/execute.py in <listcomp>(.0)
207 def convert_to_mixed_eager_tensors(values, ctx):
208 v = [ops.internal_convert_to_tensor(t, ctx=ctx) for t in values]
--> 209 types = [t._datatype_enum() for t in v] # pylint: disable=protected-access
210 return types, v
211
AttributeError: 'Tensor' object has no attribute '_datatype_enum'
Nuria: this should just have been fixed earlier today. If you do not want to wait for the next release (coming soon), I would recommend that you simply build a local pip package from source. You can find instructions in the install guide.
As a followup here: TFF 0.4.0 has just been released, which contains this bugfix.
Error:
TypeError: Fetch argument None has invalid type
I think the error occurs when I'm saving the model in the callback modelcheckpoint. On searching the error, this came up but I cannot use this answer because I am using keras thus I don't explicitly call sess.run() in tensorflow. Also the epoch is trained flawlessly, it is only when it is being saved does the error pop up.
Code:
The complete model is in a kaggle notebook linked here: https://www.kaggle.com/aevinq/cnn-batchnormalization-0-1646/
The relevant code where the error pops up is:
early_stopping = EarlyStopping(monitor='val_loss', patience=5, mode='min')
mcp_save = ModelCheckpoint('md.hdf5', save_best_only=True, monitor='val_loss', mode='min')
reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, verbose=1, epsilon=1e-4, mode='min')
history = model.fit(train_X, train_y, batch_size=32, epochs=20, verbose=1, validation_split=0.25, callbacks=[early_stopping, reduce_lr_loss, mcp_save])
Error:
Train on 4413 samples, validate on 1471 samples
Epoch 1/20
4384/4413 [============================>.] - ETA: 1s - loss: 0.5157 - acc: 0.7696
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-11-97f0757a1e9c> in <module>()
2 mcp_save = ModelCheckpoint('md.hdf5', save_best_only=True, monitor='val_loss', mode='min')
3 reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, verbose=1, epsilon=1e-4, mode='min')
----> 4 history = model.fit(train_X, train_y, batch_size=32, epochs=20, verbose=1, validation_split=0.25, callbacks=[early_stopping, reduce_lr_loss, mcp_save])
/opt/conda/lib/python3.6/site-packages/Keras-2.1.2-py3.6.egg/keras/models.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
970 initial_epoch=initial_epoch,
971 steps_per_epoch=steps_per_epoch,
--> 972 validation_steps=validation_steps)
973
974 def evaluate(self, x=None, y=None,
/opt/conda/lib/python3.6/site-packages/Keras-2.1.2-py3.6.egg/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
1655 initial_epoch=initial_epoch,
1656 steps_per_epoch=steps_per_epoch,
-> 1657 validation_steps=validation_steps)
1658
1659 def evaluate(self, x=None, y=None,
/opt/conda/lib/python3.6/site-packages/Keras-2.1.2-py3.6.egg/keras/engine/training.py in _fit_loop(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)
1231 for l, o in zip(out_labels, val_outs):
1232 epoch_logs['val_' + l] = o
-> 1233 callbacks.on_epoch_end(epoch, epoch_logs)
1234 if callback_model.stop_training:
1235 break
/opt/conda/lib/python3.6/site-packages/Keras-2.1.2-py3.6.egg/keras/callbacks.py in on_epoch_end(self, epoch, logs)
71 logs = logs or {}
72 for callback in self.callbacks:
---> 73 callback.on_epoch_end(epoch, logs)
74
75 def on_batch_begin(self, batch, logs=None):
/opt/conda/lib/python3.6/site-packages/Keras-2.1.2-py3.6.egg/keras/callbacks.py in on_epoch_end(self, epoch, logs)
413 self.model.save_weights(filepath, overwrite=True)
414 else:
--> 415 self.model.save(filepath, overwrite=True)
416 else:
417 if self.verbose > 0:
/opt/conda/lib/python3.6/site-packages/Keras-2.1.2-py3.6.egg/keras/engine/topology.py in save(self, filepath, overwrite, include_optimizer)
2563 """
2564 from ..models import save_model
-> 2565 save_model(self, filepath, overwrite, include_optimizer)
2566
2567 def save_weights(self, filepath, overwrite=True):
/opt/conda/lib/python3.6/site-packages/Keras-2.1.2-py3.6.egg/keras/models.py in save_model(model, filepath, overwrite, include_optimizer)
145 if symbolic_weights:
146 optimizer_weights_group = f.create_group('optimizer_weights')
--> 147 weight_values = K.batch_get_value(symbolic_weights)
148 weight_names = []
149 for i, (w, val) in enumerate(zip(symbolic_weights,
/opt/conda/lib/python3.6/site-packages/Keras-2.1.2-py3.6.egg/keras/backend/tensorflow_backend.py in batch_get_value(ops)
2208 """
2209 if ops:
-> 2210 return get_session().run(ops)
2211 else:
2212 return []
/opt/conda/lib/python3.6/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
887 try:
888 result = self._run(None, fetches, feed_dict, options_ptr,
--> 889 run_metadata_ptr)
890 if run_metadata:
891 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/opt/conda/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1103 # Create a fetch handler to take care of the structure of fetches.
1104 fetch_handler = _FetchHandler(
-> 1105 self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)
1106
1107 # Run request and get response.
/opt/conda/lib/python3.6/site-packages/tensorflow/python/client/session.py in __init__(self, graph, fetches, feeds, feed_handles)
412 """
413 with graph.as_default():
--> 414 self._fetch_mapper = _FetchMapper.for_fetch(fetches)
415 self._fetches = []
416 self._targets = []
/opt/conda/lib/python3.6/site-packages/tensorflow/python/client/session.py in for_fetch(fetch)
232 elif isinstance(fetch, (list, tuple)):
233 # NOTE(touts): This is also the code path for namedtuples.
--> 234 return _ListFetchMapper(fetch)
235 elif isinstance(fetch, dict):
236 return _DictFetchMapper(fetch)
/opt/conda/lib/python3.6/site-packages/tensorflow/python/client/session.py in __init__(self, fetches)
339 """
340 self._fetch_type = type(fetches)
--> 341 self._mappers = [_FetchMapper.for_fetch(fetch) for fetch in fetches]
342 self._unique_fetches, self._value_indices = _uniquify_fetches(self._mappers)
343
/opt/conda/lib/python3.6/site-packages/tensorflow/python/client/session.py in <listcomp>(.0)
339 """
340 self._fetch_type = type(fetches)
--> 341 self._mappers = [_FetchMapper.for_fetch(fetch) for fetch in fetches]
342 self._unique_fetches, self._value_indices = _uniquify_fetches(self._mappers)
343
/opt/conda/lib/python3.6/site-packages/tensorflow/python/client/session.py in for_fetch(fetch)
229 if fetch is None:
230 raise TypeError('Fetch argument %r has invalid type %r' %
--> 231 (fetch, type(fetch)))
232 elif isinstance(fetch, (list, tuple)):
233 # NOTE(touts): This is also the code path for namedtuples.
TypeError: Fetch argument None has invalid type <class 'NoneType'>
It's a bug in Keras. There are None values in model.optimizer.weights after a recent update, which leads to an error when K.batch_get_value is called during model saving.
I've opened a PR to fix it and it's merged. You can install the latest Keras on Github to fix it.