Real Analysis, strictly increasing, bounded function - analysis

Let f be a bounded, strictly increasing function on [0,infinity) such that f(0)=0.
Can the derivative of such functions be zero at zero ?(in limiting case).

Related

sklearn logloss parameter normalize function

A rather trivial question: What does the parameter "normalize" for sklearn's log_loss metric do?
According to the documentation: "normalize : bool, optional (default=True)
If true, return the mean loss per sample. Otherwise, return the sum of the per-sample losses." My understanding is that it has do to with whether or not the N is included, True is average, False is sum: logloss = -1/N (sum of per case loss)
log loss function
If so, optimizing one or the other does not make a difference, then, why do we prefer one over the other? In other words, what is the point of putting the parameter in place? Personal preference?
While the minimisation of f(x) and 1/N f(x) is equivalent, the meaning of constants change when you are dealing with functions of form f(x) + alpha g(x) vs. 1/N f(x) + alpha g(x), which happens when you are learning for example regularised logistic regression, thus in second case equivalent alpha is 1/N * previous alpha. There is no "one choice" here, it simply depends on the application - sometimes mean is better suited (when you need invariance to the sample size) and sometimes sum.

Wouldn't setting the first derivative of Cost function J to 0 gives the exact Theta values that minimize the cost?

I am currently doing Andrew NG's ML course. From my calculus knowledge, the first derivative test of a function gives critical points if there are any. And considering the convex nature of Linear / Logistic Regression cost function, it is a given that there will be a global / local optima. If that is the case, rather than going a long route of taking a miniscule baby step at a time to reach the global minimum, why don't we use the first derivative test to get the values of Theta that minimize the cost function J in a single attempt , and have a happy ending?
That being said, I do know that there is a Gradient Descent alternative called Normal Equation that does just that in one successful step unlike the former.
On a second thought, I am thinking if it is mainly because of multiple unknown variables involved in the equation (which is why the Partial Derivative comes into play?) .
Let's take an example:
Gradient simple regression cost function:
Δ[RSS(w) = [(y-Hw)T(y-Hw)]
y : output
H : feature vector
w : weights
RSS: residual sum of squares
Equating this to 0 for getting the closed form solution will give:
w = (H T H)-1 HT y
Now assuming there are D features, the time complexity for calculating transpose of matrix is around O(D3). If there are a million features, it is computationally impossible to do within reasonable amount of time.
We use these gradient descent methods since they give solutions with reasonably acceptable solutions within much less time.

Practicing Kernel trick in SVM

I am reading the theory of SVM. In kernel trick, what I understand is, if we have a data which is not linear separable in the original dimensions n, we use the kernel to map the data to a higher space to be linear separable (we have to choose the right kernel depending on the data set, etc). However, when I watched this video of Andrew ng Kernel SVM, What I understand is we can map original data into a smaller space which make me confused!? Any explanation.
Could you explain me how does RBF kernel work to map each original data sample x1(x11,x12,x13,....,x1n) to a higher space (with dimensions m) to be X1(X11,X12,X13,...,X1m) with a concrete example. Also, what I understand is the kernel compute the inner product of the transformed data (so there is an other transformation before the RBF, which means that RBF transform implicitly the data to a higher space but How?).
other thing: the kernel is a function k(x,x1):(R^n)^2->R =g(x).g(x1), with g is a transformation function, how to define g in the case of RBF kernel?
Suppose that we are in the test set, What I understand is x is the sample to be classified and x1 is the support vector (because only the support vectors will be used to calculate the hyperplane). in the case of RBF
k(x,x1)=exp(-(x-x1)^2/2sigma), so where is the transformation?
Last question: Admit that the RBF do the mapping to a higher dimension m, it is possible to show this m? I want to see the theoretical reality.
I want to implement SVM with RBF kernel. What is the m here and how to choose it? How to implement kernel trick in practice?
Could you explain me how does RBF kernel work to map each original data sample x1(x11,x12,x13,....,x1n) to a higher space (with dimensions m) to be X1(X11,X12,X13,...,X1m) with a concrete example. Also, what I understand is the kernel compute the inner product of the transformed data (so there is an other transformation before the RBF, which means that RBF transform implicitly the data to a higher space but How?).
Exactly as you said - kernel is an inner product of the projected space, not the projection itself. The whole trick is that you do not ever transform your data, because it is computationally too expensive to do so.
other thing: the kernel is a function k(x,x1):(R^n)^2->R =g(x).g(x1), with g is a transformation function, how to define g in the case of RBF kernel?
For rbf kernel, g is actually a mapping from R^n into the space of continuous functions (L2), and each point is mapped into unnormalized gaussian distribution with mean x, and variance sigma^2. Thus (up to some normalizing constant A that we will drop)
g(x) = N(x, sigma^2)[z] / A # notice this is not a number but a function of z!
and now inner product in the space of functions is the integral of products over the whole domain thus
K(x, y) = <g(x), g(y)>
= INT_{R^n} N(x, sigma^2)[z] N(y, sigma^2)[z] / A^2 dz
= B exp(-||x-y||^2 / (2*sigma^2))
where B is some constant factor (normalization) depending solely on sigma^2, thus we can drop it (as scaling does not really matter here) for computational simplicity.
Suppose that we are in the test set, What I understand is x is the sample to be classified and x1 is the support vector (because only the support vectors will be used to calculate the hyperplane). in the case of RBF k(x,x1)=exp(-(x-x1)^2/2sigma), so where is the transformation?
as said before - transformation is never explicitly used, you simply show that inner product of your hyperplane with the transformed point can be expressed again as inner products with support vectors, thus you do not ever transform anything, just use kernels
<w, g(x)> = < SUM_{i=1}^N alpha_i y_i g(sv_i), g(x)>
= SUM_{i=1}^N alpha_i y_i <g(sv_i), g(x)>
= SUM_{i=1}^N alpha_i y_i K(sv_i, x)
where sv_i is i'th support vector, alpha_i is the per-sample weight (Lagrange multiplier) found during the optimization process and y_i is label of i'th support vector.
Last question: Admit that the RBF do the mapping to a higher dimension m, it is possible to show this m? I want to see the theoretical reality.
In this case m is infinity, as your new space is space of continuous functions in the domain of R^n -> R, thus a single vector (function) is defined as a continuum (size of the set of real numbers) values - one per each possible input value coming from R^n (it is a simple set theory result that R^n for any positive n is of size continuum). Thus in terms of pure mathematics, m = |R|, and using set theory this is so called Beth_1 (https://en.wikipedia.org/wiki/Beth_number).
I want to implement SVM with RBF kernel. What is the m here and how to choose it? How to implement kernel trick in practice?
You do not choose m, it is defined by the kernel itself. Implementing kernel trick in practise requires expressing all your optimization routines in the form, where training points are used solely in the context of inner products, and just replacing them with kernel calls. This is way too complex to describe in SO form.

Why is 1-norm SVM more sparse than 2-norm SVM?

How are we increasing sparsity by using 1-norm weight in cost function as compared to using 2-norm weight in the same cost function for an SVM.
For 1-norm : Cost function- Minimize ||w||_1
For 2-norm : Cost function - Minimize ||w||_2
Is it related to LP-SVM?
Look at the partial derivative of the l_1 loss with respect to some parameter.
The loss is constant with respect to an increase in weight. So that increased weight needs to offset some fixed amount of error, regardless of how small the weight already is.
Compare this the l2 loss, where the penalty scales with the size of the current parameter. So as it gets near 0, it only needs to have an infinitesimal decrease in error to offset the regularization penalty.
Note that ||w||_2 < ||w||_1 for the same w when 0 < w < 1 (which usually happens) since L2 norm squares the weights.
That's why ||w||_1 is a harder constraint which results in a sparse vector.
It's not specific to SVM, many algorithms use L1 or L2 regularizations.

Probability and Neural Networks

Is it a good practice to use sigmoid or tanh output layers in Neural networks directly to estimate probabilities?
i.e the probability of given input to occur is the output of sigmoid function in the NN
EDIT
I wanted to use neural network to learn and predict the probability of a given input to occur..
You may consider the input as State1-Action-State2 tuple.
Hence the output of NN is the probability that State2 happens when applying Action on State1..
I Hope that does clear things..
EDIT
When training NN, I do random Action on State1 and observe resultant State2; then teach NN that input State1-Action-State2 should result in output 1.0
First, just a couple of small points on the conventional MLP lexicon (might help for internet searches, etc.): 'sigmoid' and 'tanh' are not 'output layers' but functions, usually referred to as "activation functions". The return value of the activation function is indeed the output from each layer, but they are not the output layer themselves (nor do they calculate probabilities).
Additionally, your question recites a choice between two "alternatives" ("sigmoid and tanh"), but they are not actually alternatives, rather the term 'sigmoidal function' is a generic/informal term for a class of functions, which includes the hyperbolic tangent ('tanh') that you refer to.
The term 'sigmoidal' is probably due to the characteristic shape of the function--the return (y) values are constrained between two asymptotic values regardless of the x value. The function output is usually normalized so that these two values are -1 and 1 (or 0 and 1). (This output behavior, by the way, is obviously inspired by the biological neuron which either fires (+1) or it doesn't (-1)). A look at the key properties of sigmoidal functions and you can see why they are ideally suited as activation functions in feed-forward, backpropagating neural networks: (i) real-valued and differentiable, (ii) having exactly one inflection point, and (iii) having a pair of horizontal asymptotes.
In turn, the sigmoidal function is one category of functions used as the activation function (aka "squashing function") in FF neural networks solved using backprop. During training or prediction, the weighted sum of the inputs (for a given layer, one layer at a time) is passed in as an argument to the activation function which returns the output for that layer. Another group of functions apparently used as the activation function is piecewise linear function. The step function is the binary variant of a PLF:
def step_fn(x) :
if x <= 0 :
y = 0
if x > 0 :
y = 1
(On practical grounds, I doubt the step function is a plausible choice for the activation function, but perhaps it helps understand the purpose of the activation function in NN operation.)
I suppose there an unlimited number of possible activation functions, but in practice, you only see a handful; in fact just two account for the overwhelming majority of cases (both are sigmoidal). Here they are (in python) so you can experiment for yourself, given that the primary selection criterion is a practical one:
# logistic function
def sigmoid2(x) :
return 1 / (1 + e**(-x))
# hyperbolic tangent
def sigmoid1(x) :
return math.tanh(x)
what are the factors to consider in selecting an activation function?
First the function has to give the desired behavior (arising from or as evidenced by sigmoidal shape). Second, the function must be differentiable. This is a requirement for backpropagation, which is the optimization technique used during training to 'fill in' the values of the hidden layers.
For instance, the derivative of the hyperbolic tangent is (in terms of the output, which is how it is usually written) :
def dsigmoid(y) :
return 1.0 - y**2
Beyond those two requriements, what makes one function between than another is how efficiently it trains the network--i.e., which one causes convergence (reaching the local minimum error) in the fewest epochs?
#-------- Edit (see OP's comment below) ---------#
I am not quite sure i understood--sometimes it's difficult to communicate details of a NN, without the code, so i should probably just say that it's fine subject to this proviso: What you want the NN to predict must be the same as the dependent variable used during training. So for instance, if you train your NN using two states (e.g., 0, 1) as the single dependent variable (which is obviously missing from your testing/production data) then that's what your NN will return when run in "prediction mode" (post training, or with a competent weight matrix).
You should choose the right loss function to minimize.
The squared error does not lead to the maximum likelihood hypothesis here.
The squared error is derived from a model with Gaussian noise:
P(y|x,h) = k1 * e**-(k2 * (y - h(x))**2)
You estimate the probabilities directly. Your model is:
P(Y=1|x,h) = h(x)
P(Y=0|x,h) = 1 - h(x)
P(Y=1|x,h) is the probability that event Y=1 will happen after seeing x.
The maximum likelihood hypothesis for your model is:
h_max_likelihood = argmax_h product(
h(x)**y * (1-h(x))**(1-y) for x, y in examples)
This leads to the "cross entropy" loss function.
See chapter 6 in Mitchell's Machine Learning
for the loss function and its derivation.
There is one problem with this approach: if you have vectors from R^n and your network maps those vectors into the interval [0, 1], it will not be guaranteed that the network represents a valid probability density function, since the integral of the network is not guaranteed to equal 1.
E.g., a neural network could map any input form R^n to 1.0. But that is clearly not possible.
So the answer to your question is: no, you can't.
However, you can just say that your network never sees "unrealistic" code samples and thus ignore this fact. For a discussion of this (and also some more cool information on how to model PDFs with neural networks) see contrastive backprop.

Resources