Understanding the relationship between the linear regression method and the neural network method - nnet

Theoretically, a neural network model with one hidden layer would perform as a linear regression model. Under what parametrization would the neural network model created using the nnet package perform the same as a linear regression model?

Related

What Does tf.estimator.LinearClassifier() Do?

In TensorFlow library, what does the tf.estimator.LinearClassifier class do in linear regression models? (In other words, what is it used for?)
Linear Classifier is nothing but Logistic Regression.
According to Tensorflow documentation, tf.estimator.LinearClassifier is used to
Train a linear model to classify instances into one of multiple
possible classes. When number of possible classes is 2, this is binary
classification
Linear regression predicts a value while the linear classifier predicts a class. Classification aims at predicting the probability of each class given a set of inputs.
For implementation of tf.estimator.LinearClassifier, please follow this tutorial by guru99.
To know about the linear classifiers, read this article.

Can a model using Artificial Neural Networks be considered as a multi linear regression model?

I have a task of building a multi linear regression model for a prediction problem (input parameters have combination of numerical and categorical variables).
If I use Artifical Neural Networks (ANN) to build a model that does the prediction, can that be multi linear regression model or will that be a deep learning model?
I am confused if I can use ann for building a multi linear regression model.
If you want to build a multi linear regression model with neural networks, you can. That's just a model with no non-linearities/activation functions (no relu, sigmoid).
As such, it's fully linear and thus it's only one layer deep (additional layers would be superfluous) and doesn't qualify as deep learning.
If you look at how regression is done in Tensorflow or Keras, it's really one dense layer with no activation.

Why do neural networks work so well?

I understand all the computational steps of training a neural network with gradient descent using forwardprop and backprop, but I'm trying to wrap my head around why they work so much better than logistic regression.
For now all I can think of is:
A) the neural network can learn it's own parameters
B) there are many more weights than simple logistic regression thus allowing for more complex hypotheses
Can someone explain why a neural network works so well in general? I am a relative beginner.
Neural Networks can have a large number of free parameters (the weights and biases between interconnected units) and this gives them the flexibility to fit highly complex data (when trained correctly) that other models are too simple to fit. This model complexity brings with it the problems of training such a complex network and ensuring the resultant model generalises to the examples it’s trained on (typically neural networks require large volumes of training data, that other models don't).
Classically logistic regression has been limited to binary classification using a linear classifier (although multi-class classification can easily be achieved with one-vs-all, one-vs-one approaches etc. and there are kernalised variants of logistic regression that allow for non-linear classification tasks). In general therefore, logistic regression is typically applied to more simple, linearly-separable classification tasks, where small amounts of training data are available.
Models such as logistic regression and linear regression can be thought of as simple multi-layer perceptrons (check out this site for one explanation of how).
To conclude, it’s the model complexity that allows neural nets to solve more complex classification tasks, and to have a broader application (particularly when applied to raw data such as image pixel intensities etc.), but their complexity means that large volumes of training data are required and training them can be a difficult task.
Recently Dr. Naftali Tishby's idea of Information Bottleneck to explain the effectiveness of deep neural networks is making the rounds in the academic circles.
His video explaining the idea (link below) can be rather dense so I'll try to give the distilled/general form of the core idea to help build intuition
https://www.youtube.com/watch?v=XL07WEc2TRI
To ground your thinking, vizualize the MNIST task of classifying the digit in the image. For this, I am only talking about simple fully-connected neural networks (not Convolutional NN as is typically used for MNIST)
The input to a NN contains information about the output hidden inside of it. Some function is needed to transform the input to the output form. Pretty obvious.
The key difference in thinking needed to build better intuition is to think of the input as a signal with "information" in it (I won't go into information theory here). Some of this information is relevant for the task at hand (predicting the output). Think of the output as also a signal with a certain amount of "information". The neural network tries to "successively refine" and compress the input signal's information to match the desired output signal. Think of each layer as cutting away at the unneccessary parts of the input information, and
keeping and/or transforming the output information along the way through the network.
The fully-connected neural network will transform the input information into a form in the final hidden layer, such that it is linearly separable by the output layer.
This is a very high-level and fundamental interpretation of the NN, and I hope it will help you see it clearer. If there are parts you'd like me to clarify, let me know.
There are other essential pieces in Dr.Tishby's work, such as how minibatch noise helps training, and how the weights of a neural network layer can be seen as doing a random walk within the constraints of the problem.
These parts are a little more detailed, and I'd recommend first toying with neural networks and taking a course on Information Theory to help build your understanding.
Consider you have a large dataset and you want to build a binary classification model for that, Now you have two options that you have pointed out
Logistic Regression
Neural Networks ( Consider FFN for now )
Each node in a neural network will be associated with an activation function for example let's choose Sigmoid since Logistic regression also uses sigmoid internally to make decision.
Let's see how the decision of logistic regression looks when applied on the data
See some of the green spots present in the red boundary?
Now let's see the decision boundary of neural network (Forgive me for using a different color)
Why this happens? Why does the decision boundary of neural network is so flexible which gives more accurate results than Logistic regression?
or the question you asked is "Why neural networks works so well ?" is because of it's hidden units or hidden layers and their representation power.
Let me put it this way.
You have a logistic regression model and a Neural network which has say 100 neurons each of Sigmoid activation. Now each neuron will be equivalent to one logistic regression.
Now assume a hundred logistic units trained together to solve one problem versus one logistic regression model. Because of these hidden layers the decision boundary expands and yields better results.
While you are experimenting you can add more number of neurons and see how the decision boundary is changing. A logistic regression is same as a neural network with single neuron.
The above given is just an example. Neural networks can be trained to get very complex decision boundaries
Neural networks allow the person training them to algorithmically discover features, as you pointed out. However, they also allow for very general nonlinearity. If you wish, you can use polynomial terms in logistic regression to achieve some degree of nonlinearity, however, you must decide which terms you will use. That is you must decide a priori which model will work. Neural networks can discover the nonlinear model that is needed.
'Work so well' depends on the concrete scenario. Both of them do essentially the same thing: predicting.
The main difference here is neural network can have hidden nodes for concepts, if it's propperly set up (not easy), using these inputs to make the final decission.
Whereas linear regression is based on more obvious facts, and not side effects. A neural network should de able to make more accurate predictions than linear regression.
Neural networks excel at a variety of tasks, but to get an understanding of exactly why, it may be easier to take a particular task like classification and dive deeper.
In simple terms, machine learning techniques learn a function to predict which class a particular input belongs to, depending on past examples. What sets neural nets apart is their ability to construct these functions that can explain even complex patterns in the data. The heart of a neural network is an activation function like Relu, which allows it to draw some basic classification boundaries like:
Example classification boundaries of Relus
By composing hundreds of such Relus together, neural networks can create arbitrarily complex classification boundaries, for example:
Composing classification boundaries
The following article tries to explain the intuition behind how neural networks work: https://medium.com/machine-intelligence-report/how-do-neural-networks-work-57d1ab5337ce
Before you step into neural network see if you have assessed all aspects of normal regression.
Use this as a guide
and even before you discard normal regression - for curved type of dependencies - you should strongly consider kernels with SVM
Neural networks are defined with an objective and loss function. The only process that happens within a neural net is to optimize for the objective function by reducing the loss function or error. The back propagation helps in finding the optimized objective function and reach our output with an output condition.

When should I use linear neural networks and when non-linear?

I am using feed forward, gradient descent backpropagation neural networks.
Currently I have only worked with non-linear networks where tanh is activation function.
I was wondering.
What kind of tasks would you give to a neural networks with non-linear activation function and what kind of tasks for linear?
I know that network with linear activation function are used to solve linear problems.
What are those linear problems?
Any examples?
Thanks!
I'd say never, since composition of linear functions is still linear using a neural network with linear activations is just a way to complicate linear regression.
Whether to choose a linear model or something more complicated is up to you and depends on the data you have; this is (one of the reasons) why it is customary hold out some data during training and use it to validate the model. Other ways of testing models are residuals analysis, hypothesis testing, and so on

Why use a restricted Boltzmann machine rather than a multi-layer perceptron?

I'm trying to understand the difference between a restricted Boltzmann machine (RBM), and a feed-forward neural network (NN). I know that an RBM is a generative model, where the idea is to reconstruct the input, whereas an NN is a discriminative model, where the idea is the predict a label. But what I am unclear about, is why you cannot just use a NN for a generative model? In particular, I am thinking about deep belief networks and multi-layer perceptrons.
Suppose my input to the NN is a set of notes called x, and my output of the NN is a set of nodes y. In a discriminative model, my loss during training would be the difference between y, and the value of y that I want x to produce (e.g. ground truth probabilities for class labels). However, what about if I just made the output have the same number of nodes as the input, and then set the loss to be the difference between x and y? In this way, the network would learn to reconstruct the input, like in an RBM.
So, given that a NN (or a multi-layer perceptron) can be used to train a generative model in this way, why would you use an RBM (or a deep belief network) instead? Or in this case, would they be exactly the same?
You can use a NN for a generative model in exactly the way you describe. This is known as an autoencoder, and these can work quite well. In fact, these are often the building blocks of deep belief networks.
An RBM is a quite different model from a feed-forward neural network. They have connections going both ways (forward and backward) that have a probabilistic / energy interpretation. You'll need to read the details to understand.
A deep belief network (DBN) is just a neural network with many layers. This can be a large NN with layers consisting of a sort of autoencoders, or consist of stacked RBMs. You need special methods, tricks and lots of data for training these deep and large networks. Simple back-propagation suffers from the vanishing gradients problem. But if you do manage to train them, they can be very powerful (encode "higher level" concepts).
Hope this helps to point you in the right directions.

Resources