How to use tactics in z3's SMT2 syntax? - z3

I am interacting with z3 through its smt2 interface. Suppose, I write the following commands:
(declare-fun p () Int)
(declare-fun q () Int)
(declare-fun r () Int)
(assert (and (<= (+ (* 4 p) (* 3 q)) (- r 10)) (<= (+ (* 4 p) (* 3 q)) (- r 12))))
(apply simplify)
Now, I get a list of goals in the form
(goals
(goal …)
(goal …)
…
)
What do I do with it?
Another question, is there any documentation on this? Where should I look for it?

Tactics are a z3 invention; so you will not find any official documentation on how they should be used from an SMTLib perspective.
In general, you don't just use apply. Instead, you use the method check-sat-using, that takes a tactic as an argument. In general, check-sat is equivalent to (check-sat-using smt), i.e., using the smt tactic.
For your example, you can say:
(check-sat-using (then simplify smt))
this would reduce the problem to sat. The idea is that you can use these "tactics" to guide the solver to find a solution (or go faster).
Tactics are usually intended to be used from higher-level interfaces, such as C/C++/Java etc., and unfortunately they aren't all that well documented. Read through http://www.cs.tau.ac.il/~msagiv/courses/asv/z3py/strategies-examples.htm, which is using the Python interface, but you can use the same ideas directly from smtLib as well.
Tactics are also documented at https://theory.stanford.edu/~nikolaj/programmingz3.html#sec-tactics, though again it uses the Python interface not SMTLib.

Related

How to obtain parametric models using Z3?

Given this formula,
(p & (x < 0)) | (~p & (x > 0)).
How could I get these 2 "parametric" models in Z3:
{p=true, x<0}
{p=false, x>0}
When I submit this SMTLIB program to Z3,
(declare-const p Bool)
(declare-const x Int)
(assert (or (and p (< x 0)) (and (not p) (> x 0))))
(check-sat)
(get-model)
(assert (or (not p) (not (= x -1))))
(check-sat)
(get-model)
(exit)
it gives me concrete models instead (e.g. {p=true, x=-1}, {p=true, x=-2}, ...).
You can't.
SMT solvers do not produce non-concrete models; it's just not how they work. What you want is essentially some form of "simplification" in steroids, and while you can use an SMT solver to help you in simplifying expressions, you'll have to build a tool on top that understands the kind of simplifications you'd like to see. Bottom line: What you'd consider "simple" as a person, and what an automated SMT-solver sees as "simple" are usually quite different from each other; and given lack of normal forms over arbitrary theories, you cannot expect them to do a good job.
If these sorts of simplifications is what you're after, you might want to look at symbolic math packages, such as sympy, Mathematica, etc.

What additional axioms do we need to add so that Z3 can verify the satisfiability of programs with recurrences?

As we know Z3 has limitations with recurrences. Is there any way get the result for the following program? what will additional equation help z3 get the result?
from z3 import *
ackermann=Function('ackermann',IntSort(),IntSort(),IntSort())
m=Int('m')
n=Int('n')
s=Solver()
s.add(ForAll([n,m],Implies(And(n>=0,m>=0),ackermann(m,n) == If(m!=0,If(n!=0,ackermann(m - 1,ackermann(m,n - 1)),If(n==0,ackermann(m - 1,1),If(m==0,n + 1,0))),If(m==0,n + 1,0)))))
s.add(n>=0)
s.add(m>=0)
s.add(Not(Implies(ackermann(m,n)>=0,ackermann(m+1,0)>=0)))
s.check()
With a nested recursive definition like Ackermann's function, I don't think there's much you can do to convince Z3 (or any other SMT solver) to actually do any interesting proofs. Such properties will require clever inductive arguments, and an SMT solver is just not the right tool for this sort of verification. A theorem prover like Isabelle, HOL, Coq, ... is the better choice here.
Having said that, the basic approach to establishing recursive function properties in SMT is to literally code up the inductive hypothesis as a quantified axiom, and arrange for the property you want proven to precisely line up with that axiom when the e-matching engine kicks in so it can instantiate the quantifiers "correctly." I'm putting the word correctly in quotes here, because the matching engine will go ahead and keep instantiating the axiom in unproductive ways especially for a function like Ackermann's. Theorem provers, on the other hand, precisely give you control over the proof structure so you can explicitly guide the prover through the proof-search space.
Here's an example you can look at: list concat in z3 which is doing an inductive proof of a much simpler inductive property than you are targeting, using the SMT-Lib interface. While it won't be easy to extend it to handle your particular example, it might provide some insight into how to go about it.
In the particular case of Z3, you can also utilize its fixed-point reasoning engine using the PDR algorithm to answer queries about certain recursive functions. See http://rise4fun.com/z3/tutorialcontent/fixedpoints#h22 for an example that shows how to model McCarthy's famous 91 function as an interesting case study.
Z3 will not try to do anything by induction for you, but (as Levent Erkok mentioned) you can give it the induction hypothesis and have it check that the result follows.
This works on your example as follows.
(declare-fun ackermann (Int Int) Int)
(assert (forall ((m Int) (n Int))
(= (ackermann m n)
(ite (= m 0) (+ n 1)
(ite (= n 0) (ackermann (- m 1) 1)
(ackermann (- m 1) (ackermann m (- n 1))))))))
(declare-const m Int)
(declare-const n Int)
(assert (>= m 0))
(assert (>= n 0))
; Here's the induction hypothesis
(assert (forall ((ihm Int) (ihn Int))
(=> (and (<= 0 ihm) (<= 0 ihn)
(or (< ihm m) (and (= ihm m) (< ihn n))))
(>= (ackermann ihm ihn) 0))))
(assert (not (>= (ackermann m n) 0)))
(check-sat) ; reports unsat as desired

Get fractional part of real in QF_UFNRA

Using smtlib I would like to make something like modulo using QF_UFNRA. This disables me from using mod, to_int, to_real an such things.
In the end I want to get the fractional part of z in the following code:
(set-logic QF_UFNRA)
(declare-fun z () Real)
(declare-fun z1 () Real)
(define-fun zval_1 ((x Real)) Real
x
)
(declare-fun zval (Real) Real)
(assert (= z 1.5));
(assert (=> (and (<= 0.0 z) (< z 1.0)) (= (zval z) (zval_1 z))))
(assert (=> (>= z 1.0) (= (zval z) (zval (- z 1.0)))))
(assert (= z1 (zval z)))
Of course, as I am asking this question here, implies, that it didn't work out.
Has anybody got an idea how to get the fractional part of z into z1 using logic QF_UFNRA?
This is a great question. Unfortunately, what you want to do is not possible in general if you restrict yourself to QF_UFNRA.
If you could encode such functionality, then you can decide arbitrary Diophantine equations. You would simply cast a given Diophantine equation over reals, compute the "fraction" of the real solution with this alleged method, and assert that the fraction is 0. Since reals are decidable, this would give you a decision procedure for Diophantine equations, accomplishing the impossible. (This is known as Hilbert's 10th problem.)
So, as innocent as the task looks, it is actually not doable. But that doesn't mean you cannot encode this with some extensions, and possibly have the solver successfully decide instances of it.
If you allow quantifiers and recursive functions
If you allow yourself quantifiers and recursive-functions, then you can write:
(set-logic UFNRA)
(define-fun-rec frac ((x Real)) Real (ite (< x 1) x (frac (- x 1))))
(declare-fun res () Real)
(assert (= (frac 1.5) res))
(check-sat)
(get-value (res))
To which z3 responds:
sat
((res (/ 1.0 2.0)))
Note that we used the UFNRA logic allowing quantification, which is required here implicitly due to the use of the define-fun-rec construct. (See the SMTLib manual for details.) This is essentially what you tried to encode in your question, but instead using the recursive-function-definition facilities instead of implicit encoding. There are several caveats in using recursive functions in SMTLib however: In particular, you can write functions that render your system inconsistent rather easily. See Section 4.2.3 of http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.5-draft.pdf for details.
If you can use QF_UFNIRA
If you move to QF_UFNIRA, i.e., allow mixing reals and integers, the encoding is easy:
(set-logic QF_UFNIRA)
(declare-fun z () Real)
(declare-fun zF () Real)
(declare-fun zI () Int)
(assert (= z (+ zF zI)))
(assert (<= 0 zF))
(assert (< zF 1))
(assert (= z 1.5))
(check-sat)
(get-value (zF zI))
z3 responds:
sat
((zF (/ 1.0 2.0))
(zI 1))
(You might have to be careful about the computation of zI when z < 0, but the idea is the same.)
Note that just because the encoding is easy doesn't mean z3 will always be able to answer the query successfully. Due to mixing of Real's and Integer's, the problem remains undecidable as discussed before. If you have other constraints on z, z3 might very well respond unknown to this encoding. In this particular case, it happens to be simple enough so z3 is able to find a model.
If you have sin and pi:
This is more of a thought experiment than a real alternative. If SMTLib allowed for sin and pi, then you can check whether sin (zI * pi) is 0, for a suitably constrained zI. Any satisfying model to this query would ensure that zI is integer. You can then use this value to extract the fractional part by subtracting zI from z.
But this is futile as SMTLib neither allows for sin nor pi. And for good reason: Decidability would be lost. Having said that, maybe some brave soul can design a logic that supported sin, pi, etc., and successfully answered your query correctly, while returning unknown when the problem becomes too hard for the solver. This is already the case for nonlinear arithmetic and the QF_UFNIRA fragment: The solver may give up in general, but the heuristics it employs might solve problems of practical interest.
Restriction to Rationals
As a theoretical aside, it turns out that if you restrict yourself to rationals only (instead of actual reals) then you can indeed write a first-order formula to recognize integers. The encoding is not for the faint of heart, however: http://math.mit.edu/~poonen/papers/ae.pdf. Furthermore, since the encoding involves quantifiers, it's probably quite unlikely that SMT solvers will do well with a formulation based on this idea.
[Incidentally, I should extend thanks to my work colleagues; this question made for a great lunch-time conversation!]

Z3: eliminate don't care variables

I have a test.smt2 file:
(set-logic QF_IDL)
(declare-const a Int)
(declare-const b Int)
(declare-const c Int)
(assert (or (< a 2) (< b 2 )) )
(check-sat)
(get-model)
(exit)
Is there anyway to tell Z3 to only output a=1 (or b=1)? Because when a is 1, b's value does not matter any more.
I executed z3 smt.relevancy=2 -smt2 test.smt2
(following How do I get Z3 to return minimal model?, although smt.relevancy seems has default value 2), but it still outputs:
sat
(model
(define-fun b () Int
2)
(define-fun a () Int
1)
)
Thank you!
The example given in the answer to the question referred to is slightly out of date. A Solver() will pick a suitable tactic to solve the problem, and it appears that it picks a different one now. We can still get that behavior by using a SimpleSolver() (at a possibly significant performance loss). Here's an updated example:
from z3 import *
x, y = Bools('x y')
s = SimpleSolver()
s.set(auto_config=False,relevancy=2)
s.add(Or(x, y))
print s.check()
print s.model()
Note that the (check-sat) command will not execute the same tactic as the SimpleSolver(); to get the same behavior when solving SMT2 files, we need to use the smt tactic, i.e., use (check-sat-using smt). In many cases it will be beneficial to additionally run the simplifier on the problem first which we can achieve by constructing a custom tactic, e.g., (check-sat-using (then simplify smt))

z3 produces unknown for assertions without quantifiers

I have some simple constraints involving multiplication of reals in z3 that are producing unknown. The problem seems to be that they are wrapped in a datatype, as the unwrapped version produces sat.
Here is a simplified case:
(declare-datatypes () ((T (NUM (n Real)))))
(declare-const a T)
(declare-const b T)
(declare-const c T)
(assert (is-NUM a))
(assert (is-NUM b))
(assert (is-NUM c))
(assert (= c (NUM (* (n a) (n b)))))
(check-sat)
;unknown
And without the datatype:
(declare-const a Real)
(declare-const b Real)
(declare-const c Real)
(assert (= c (* a b)))
(check-sat)
;sat
I'm using z3 3.2, but this also is reproducible in the web interface.
Yes, Z3 can return unknown in quantifier-free problems.
Here are the main reasons:
Run out of time or memory
The quantifier-free fragment is undecidable (e.g., nonlinear integer arithmetic)
The quantifier-free fragment is too expensive, and/or the procedure implemented in Z3 is incomplete.
Your problems are in a decidable fragment, and the unknown is due to the incomplete procedure for nonlinear arithmetic used in Z3. Z3 4.0 has a complete procedure for nonlinear real arithmetic, but it is still not integrated with the other theories. So, it will not help in the first problem.
The different in behavior in the first and second queries is due to different strategies used for each query. Z3 has a new framework for defining custom strategies. You can get sat for the first query by using the command
(check-sat-using (then simplify solve-eqs smt))
instead of
(check-sat)
The first command forces Z3 to eliminate variables by solving equalities (i.e., tactic solve-eqs). It will eliminate the equality (= c (NUM (* (n a) (n b)))). This tactic is automatically used in the second problem in Z3 3.x. Note that this tactic will not help if we replace the equality with (>= c (NUM (* (n a) (n b)))).
Moreover, the second problem contains only nonlinear arithmetic. So, in Z3 4.0, the new (and complete) solver for nonlinear real arithmetic will be automatically used.
You can learn about the new strategy framework at http://rise4fun.com/Z3/tutorial/strategies, http://rise4fun.com/Z3Py/tutorial/strategies
Your examples are in non-linear arithmetic. Z3 4.0 is able to solve problems with only non-linear arithmetic assertions, but not along with uninterpreted functions and other theories. That explains why it produces unknown in the first example. This limitation is likely to be addressed in Z3's future versions.

Resources