OpenCV detect horizontal and vertical lines - opencv

I am quite a noob when it comes to image processing. I choosed OpenCV to make my first steps. I was searching for a WYSIWYG editor to play around with the features OpenCV offers but I couldn't find.
My current problem is to detect the horizontal and vertical black lines in this picture going from most left to most right and from most top to most bottom:
I found out I can use HoughLinesP for this but the only parameter I am sure it is correct is the the minLineLength of the line. Actually it doesn't find any lines. I am reading the image as a grayscaled image but I am not sure if I need to make use of Canny before applying it to HoughLinesP.
Thanks for help.
Here is some C# code:
var image = CvInvoke.Imread(filePath, Emgu.CV.CvEnum.ImreadModes.Grayscale);
var lines = CvInvoke.HoughLinesP(image, 1, 1, 0, image.Height);
As #Micka mentioned I should invert the image and I tried further steps to make it even simpler I started with a simple cross picture:
var image = CvInvoke.Imread("cross.png", Emgu.CV.CvEnum.ImreadModes.Grayscale);
CvInvoke.BitwiseNot(image, image);
var lines = CvInvoke.HoughLinesP(image, rho: 1, theta: 1, 0, image.Height - 1);
But it detects only one line of length 8 but it should be 9 pixels long.

Related

Extract text from background grids/lines [2]

I'm trying to remove the grid lines in handwriting picture. I tried to use FFT to extract the grid pattern and remove it (this is from an answer in the original question, which is closed somehow. It has more background as well.). This image shows what I am able to get currently (Illustration result):
The first line is a real image with handwriting character. Since it's taken by phone in various conditions (light, direction, etc.), the grid line might not be perfect horizontal/vertical, and the color of grid line also varies and might be close the the color of characters. I turn it to grayscale, apply fft, and use tries to use thresholding to extract the patterns (in red rectangle, the illustration is using OTSU). Then I mask the image with the thresholding pattern, and use ifft to get the result. It fails on the real image obviously.
The second line is a real image of blank grid w/o handwriting character. From this, I think 3 lines (vertical and horizontal) in the center are the patterns I care.
The third line is a synthetic image w/ perfect grid lines. It's just for reference. And after applying the same algorithm, the grid lines could be removed successfully.
The fourth line is a synthetic image w/ perfect dashed grid lines, which is closer to the grid lines on real handwriting practice paper. It's also for reference. It shows the pattern of dashed lines are actually more complicated than 3 lines in the center. With the same algorithm, the grid lines could be removed almost completely as well.
The code I use is:
def FFTCV(img):
util.Plot(img, 'Input')
print(img.shape)
if len(img.shape) == 3 and img.shape[2] == 3:
img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
util.Plot(img, 'Gray')
dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
util.Plot(cv.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]), 'fft shift')
magnitude_spectrum = np.uint8(20*np.log(cv.magnitude(dft_shift[:,:,0],dft_shift[:,:,1])))
util.Plot(magnitude_spectrum, 'Magnitude')
_, threshold = cv.threshold(magnitude_spectrum, 0, 1, cv.THRESH_BINARY_INV + cv.THRESH_OTSU)
# threshold = cv.adaptiveThreshold(
# magnitude_spectrum, 1, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 11, 10)
# magnitude_spectrum, 1, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY_INV, 11, 10)
util.Plot(threshold, 'Threshold Mask')
fshift = dft_shift * threshold[:, :, None]
util.Plot(cv.magnitude(fshift[:,:,0],fshift[:,:,1]), 'fft shift Masked')
magnitude_spectrum = np.uint8(20*np.log(cv.magnitude(fshift[:,:,0],fshift[:,:,1])))
util.Plot(magnitude_spectrum, 'Magnitude Masked')
f_ishift = np.fft.ifftshift(fshift)
img_back = cv.idft(f_ishift)
img_back = cv.magnitude(img_back[:,:,0],img_back[:,:,1])
util.Plot(img_back, 'Back')
So I'd like to learn suggestions on how to extract the patterns for real images. Thanks very much.

weird result for circle detection using opencv's HoughCircles()

blur = cv2.GaussianBlur(pimg,(3,3),0)
edges = cv2.Canny(blur, 30, 55)
circles = cv2.HoughCircles(blur[:,:,0],cv2.cv.CV_HOUGH_GRADIENT,1,8,param1=10,param2=55,minRadius=0,maxRadius=0)
Above is my code, how I use the function, link (sample) is my results. from left to right, is the original figure, result and edges. The results( green circles) do not match the input at all. :( What mistakes I have done here, please share your opinion. Thanks.

Crop an Image to the shape of a Vector or Overlay a Shape

I imagine this is a shot in the dark, but is it possible to have a vector file of a shape (in this case a hexagon with rounded corners), and pass an image through some code and have it coming out cropped in the shape of that vector?
I'm attempting to utilize hexagons in my design and have gone through every page I possibly can. I've seen the many HTML and CSS solutions, but none of them achieve what I'm looking for flawlessly.
Another idea I have is maybe overlaying a transparent hexagon shape with white corners on top of the existing image with imagemagick, and then going through and making any white transparent. Thoughts?
I don't have any code for cropping in the shape of a vector file, but here's what I have for overlaying an outline of the shape I want on top of the other picture:
imgfile = "public/" + SecureRandom.uuid + ".png"
SmartCropper.from_file(art.url(:original)).smart_square.resize(225,225).write(imgfile)
overlay = Magick::Image.read("app/assets/images/overlay.png")
img = Magick::Image.read(imgfile)
img.composite(overlay,0,0, Magick::OverCompositeOp)
Right now it's giving me an undefined method error for composite, which is strange because I've followed some other stack overflow questions using the same thing in their models.
Any help is appreciated!
You have fallen for a common ImageMagick trap - the objects you get from the .read method are not Magick::Image objects but Magick::ImageList ones, and for most image types you want the first item from the list.
Without knowing how you have set up your overlay.png file, it is difficult to tell what the best composite option is. However, in a similar situation I found CopyOpacityCompositeOp to be useful, and to have the overlay's transparency control the transparency in the final image.
I tested the following code and it looks like it would do what you want if overlay.png was set up that way:
require 'smartcropper'
imgfile = "test_square.png"
SmartCropper.from_file( 'test_input.png' ).
smart_square.resize( 225, 225 ).write( imgfile )
overlay = Magick::Image.read( 'overlay.png' ).first
img = Magick::Image.read( imgfile ).first
img.composite( overlay, 0, 0, Magick::CopyOpacityCompositeOp ).
write( "test_result.png" )
Instead of reading overlay from a file, you could create it using Magick::Draw like this:
overlay = Magick::Image.new( 225, 225 ) do |i|
i.background_color= "Transparent"
end
gc = Magick::Draw.new
gc.stroke('white').stroke_width(10)
gc.fill('white')
gc.polygon(97.5, 26.25, 178.5, 73.125, 178.5, 167,
97.5, 213.75, 16.5, 167, 16.5, 73.125)
gc.draw( overlay )
NB That's a hexagon, but I've not bothered centering it.

Automatic approach for removing colord object shadow on white background?

I am working on some leaf images using OpenCV (Java). The leaves are captured on a white paper and some has shadows like this one:
Of course, it's somehow the extreme case (there are milder shadows).
Now, I want to threshold the leaf and also remove the shadow (while reserving the leaf's details).
My current flow is this:
1) Converting to HSV and extracting the Saturation channel:
Imgproc.cvtColor(colorMat, colorMat, Imgproc.COLOR_RGB2HSV);
ArrayList<Mat> channels = new ArrayList<Mat>();
Core.split(colorMat, channels);
satImg = channels.get(1);
2) De-noising (median) and applying adaptiveThreshold:
Imgproc.medianBlur(satImg , satImg , 11);
Imgproc.adaptiveThreshold(satImg , satImg , 255, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 401, -10);
And the result is this:
It looks OK, but the shadow is causing some anomalies along the left boundary. Also, I have this feeling that I am not using the white background to my benefit.
Now, I have 2 questions:
1) How can I improve the result and get rid of the shadow?
2) Can I get good results without working on saturation channel?. The reason I ask is that on most of my images, working on L channel (from HLS) gives way better results (apart from the shadow, of course).
Update: Using the Hue channel makes threshdolding better, but makes the shadow situation worse:
Update2: In some cases, the assumption that the shadow is darker than the leaf doesn't always hold. So, working on intensities won't help. I'm looking more toward a color channels approach.
I don't use opencv, instead I was trying to use matlab image processing toolbox to extract the leaf. Hopefully opencv has all the processing functions for you. Please see my result below. I did all the operations in your original image channel 3 and channel 1.
First I used your channel 3, threshold it with 100 (left top). Then I remove the regions on the border and regions with the pixel size smaller than 100, filling in the hole in the leaf, the result is shown in right top.
Next I used your channel 1, did the same thing as I did in channel 3, the result is shown in left bottom. Then I found out the connected regions (there are only two as you can see in the left bottom figure), remove the one with smaller area (shown in right bottom).
Suppose the right top image is I1, and the right bottom image is I, the leaf is extracted by implement ~I && I1. The leaf is:
Hope it helps. Thanks
I tried two different things:
1. other thresholding on the saturation channel
2. try to find two contours: shadow and leaf
I use c++ so your code snippets will look a little different.
trying otsu-thresholding instead of adaptive thresholding:
cv::threshold(hsv_imgs,mask,0,255,CV_THRESH_BINARY|CV_THRESH_OTSU);
leading to following images (just OTSU thresholding on saturation channel):
the other thing is computing gradient information (i used sobel, see oppenCV documentation), thresholding that and after an opening-operator I used findContours giving something like this, not useable yet (gradient contour approach):
I'm trying to do the same thing with photos of butterflies, but with more uneven and unpredictable backgrounds such as this. Once you've identified a good portion of the background (e.g. via thresholding, or as we do, flood filling from random points), what works well is to use the GrabCut algorithm to get all those bits you might miss on the initial pass. In python, assuming you still want to identify an initial area of background by thresholding on the saturation channel, try something like
import cv2
import numpy as np
img = cv2.imread("leaf.jpg")
sat = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)[:,:,1]
sat = cv2.medianBlur(sat, 11)
thresh = cv2.adaptiveThreshold(sat , 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 401, 10);
cv2.imwrite("thresh.jpg", thresh)
h, w = img.shape[:2]
bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)
grabcut_mask = thresh/255*3 #background should be 0, probable foreground = 3
cv2.grabCut(img, grabcut_mask,(0,0,w,h),bgdModel,fgdModel,5,cv2.GC_INIT_WITH_MASK)
grabcut_mask = np.where((grabcut_mask ==2)|(grabcut_mask ==0),0,1).astype('uint8')
cv2.imwrite("GrabCut1.jpg", img*grabcut_mask[...,None])
This actually gets rid of the shadows for you in this case, because the edge of the shadow actually has high saturation levels, so is included in the grab cut deletion. (I would post images, but don't have enough reputation)
Usually, however, you can't trust shadows to be included in the background detection. In this case you probably want to compare areas in the image with colour of the now-known background using the chromacity distortion measure proposed by Horprasert et. al. (1999) in "A Statistical Approach for Real-time Robust Background Subtraction and Shadow Detection". This measure takes account of the fact that for desaturated colours, hue is not a relevant measure.
Note that the pdf of the preprint you find online has a mistake (no + signs) in equation 6. You can use the version re-quoted in Rodriguez-Gomez et al (2012), equations 1 & 2. Or you can use my python code below:
def brightness_distortion(I, mu, sigma):
return np.sum(I*mu/sigma**2, axis=-1) / np.sum((mu/sigma)**2, axis=-1)
def chromacity_distortion(I, mu, sigma):
alpha = brightness_distortion(I, mu, sigma)[...,None]
return np.sqrt(np.sum(((I - alpha * mu)/sigma)**2, axis=-1))
You can feed the known background mean & stdev as the last two parameters of the chromacity_distortion function, and the RGB pixel image as the first parameter, which should show you that the shadow is basically the same chromacity as the background, and very different from the leaf. In the code below, I've then thresholded on chromacity, and done another grabcut pass. This works to remove the shadow even if the first grabcut pass doesn't (e.g. if you originally thresholded on hue)
mean, stdev = cv2.meanStdDev(img, mask = 255-thresh)
mean = mean.ravel() #bizarrely, meanStdDev returns an array of size [3,1], not [3], so flatten it
stdev = stdev.ravel()
chrom = chromacity_distortion(img, mean, stdev)
chrom255 = cv2.normalize(chrom, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX).astype(np.uint8)[:,:,None]
cv2.imwrite("ChromacityDistortionFromBackground.jpg", chrom255)
thresh2 = cv2.adaptiveThreshold(chrom255 , 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 401, 10);
cv2.imwrite("thresh2.jpg", thresh2)
grabcut_mask[...] = 3
grabcut_mask[thresh==0] = 0 #where thresh == 0, definitely background, set to 0
grabcut_mask[np.logical_and(thresh == 255, thresh2 == 0)] = 2 #could try setting this to 2 or 0
cv2.grabCut(img, grabcut_mask,(0,0,w,h),bgdModel,fgdModel,5,cv2.GC_INIT_WITH_MASK)
grabcut_mask = np.where((grabcut_mask ==2)|(grabcut_mask ==0),0,1).astype('uint8')
cv2.imwrite("final_leaf.jpg", grabcut_mask[...,None]*img)
I'm afraid with the parameters I tried, this still removes the stalk, though. I think that's because GrabCut thinks that it looks a similar colour to the shadows. Let me know if you find a way to keep it.

Overlay smaller image in a larger image in OpenCV

I would like to replace a part of the image with my image in Opencv
I used
cvGetPerspectiveMatrix() with a warpmatrix and using cvAnd() and cvOr()
but could not get it to work
This is the code that is currently displaying the image and a white polygon for the replacement image. I would like to replace the white polygon for a pic with any dimension to be scaled and replaced with the region pointed.
While the code is in javacv I could convert it to java even if c code is posted
grabber.start();
while(isDisp() && (image=grabber.grab())!=null){
if (dst_corners != null) {// corners of the image to be replaced
CvPoint points = new CvPoint((byte) 0,dst_corners,0,dst_corners.length);
cvFillConvexPoly(image,points, 4, CvScalar.WHITE, 1, 0);//white polygon covering the replacement image
}
correspondFrame.showImage(image);
}
Any pointers to this will be very helpful.
Update:
I used warpmatrix with this code and I get a black spot for the overlay image
cvSetImageROI(image, cvRect(x1,y1, overlay.width(), overlay.height()));
CvPoint2D32f p = new CvPoint2D32f(4);
CvPoint2D32f q = new CvPoint2D32f(4);
q.position(0).x(0);
q.position(0).y(0);
q.position(1).x((float) overlay.width());
q.position(1).y(0);
q.position(2).x((float) overlay.width());
q.position(2).y((float) overlay.height());
q.position(3).x(0);
q.position(3).y((float) overlay.height());
p.position(0).x((int)Math.round(dst_corners[0]);
p.position(0).y((int)Math.round(dst_corners[1]));
p.position(1).x((int)Math.round(dst_corners[2]));
p.position(1).y((int)Math.round(dst_corners[3]));
p.position(3).x((int)Math.round(dst_corners[4]));
p.position(3).y((int)Math.round(dst_corners[5]));
p.position(2).x((int)Math.round(dst_corners[6]));
p.position(2).y((int)Math.round(dst_corners[7]));
cvGetPerspectiveTransform(q, p, warp_matrix);
cvWarpPerspective(overlay, image, warp_matrix);
I get a black spot for the overlay image and even though the original image is a polygon with 4 vertices the overlay image is set as a rectangle. I believe this is because of the ROI. Could anyone please tell me how to fit the image as is and also why I am getting a black spot instead of the overlay image.
I think cvWarpPerspective(link) is what you are looking for.
So instead of doing
CvPoint points = new CvPoint((byte) 0,dst_corners,0,dst_corners.length);
cvFillConvexPoly(image,points, 4, CvScalar.WHITE, 1, 0);//white polygon covering the replacement image
Try
cvWarpPerspective(yourimage, image, M, image.size(), INTER_CUBIC, BORDER_TRANSPARENT);
Where M is the matrix you get from cvGetPerspectiveMatrix
One way to do it is to scale the pic to the white polygon size and then copy it to the grabbed image setting its Region of Interest (here is a link explaining the ROI).
Your code should look like this:
resize(pic, resizedImage, resizedImage.size(), 0, 0, interpolation); //resizedImage should have the points size
cvSetImageROI(image, cvRect(the points coordinates));
cvCopy(resizedImage,image);
cvResetImageROI(image);
I hope that helps.
Best regards,
Daniel

Resources