Histogram based on image as vector graphic - image-processing

I would like to transform histograms based on images to vector graphics.
This could be a start:
function preload() {
img = loadImage("https://upload.wikimedia.org/wikipedia/commons/thumb/3/36/Cirrus_sky_panorama.jpg/1200px-Cirrus_sky_panorama.jpg");
}
function setup() {
createCanvas(400, 400);
background(255);
img.resize(0, 200);
var maxRange = 256
colorMode(HSL, maxRange);
image(img, 0, 0);
var histogram = new Array(maxRange);
for (i = 0; i <= maxRange; i++) {
histogram[i] = 0
}
loadPixels();
for (var x = 0; x < img.width; x += 5) {
for (var y = 0; y < img.height; y += 5) {
var loc = (x + y * img.width) * 4;
var h = pixels[loc];
var s = pixels[loc + 1];
var l = pixels[loc + 2];
var a = pixels[loc + 3];
b = int(l);
histogram[b]++
}
}
image(img, 0, 0);
stroke(300, 100, 80)
push()
translate(10, 0)
for (x = 0; x <= maxRange; x++) {
index = histogram[x];
y1 = int(map(index, 0, max(histogram), height, height - 300));
y2 = height
xPos = map(x, 0, maxRange, 0, width - 20)
line(xPos, y1, xPos, y2);
}
pop()
}
<script src="https://cdn.jsdelivr.net/npm/p5#1.4.1/lib/p5.js"></script>
But I would need downloadable vector graphic files as results that are closed shapes without any gaps between. It should look like that for example:
<svg viewBox="0 0 399.84 200"><polygon points="399.84 200 399.84 192.01 361.91 192.01 361.91 182.87 356.24 182.87 356.24 183.81 350.58 183.81 350.58 184.74 344.91 184.74 344.91 188.19 339.87 188.19 339.87 189.89 334.6 189.89 334.6 185.29 328.93 185.29 328.93 171.11 323.26 171.11 323.26 172.55 317.59 172.55 317.59 173.99 311.92 173.99 311.92 179.42 306.88 179.42 306.88 182.03 301.21 182.03 301.21 183.01 295.54 183.01 295.54 179.04 289.87 179.04 289.87 175.67 284.21 175.67 284.21 182.03 278.54 182.03 278.54 176 273.5 176 273.5 172.42 267.83 172.42 267.83 179.42 262.79 179.42 262.79 182.03 257.12 182.03 257.12 183.01 251.45 183.01 251.45 178.63 245.78 178.63 245.78 175.21 240.11 175.21 240.11 182.03 234.86 182.03 234.86 150.42 229.2 150.42 229.2 155.98 223.53 155.98 223.53 158.06 217.86 158.06 217.86 167.44 212.19 167.44 212.19 162.58 206.52 162.58 206.52 155.98 200.85 155.98 200.85 158.06 195.18 158.06 195.18 167.44 189.51 167.44 189.51 177.46 183.84 177.46 183.84 166.93 178.17 166.93 178.17 153.69 172.5 153.69 172.5 155.87 166.82 155.87 166.82 158.05 161.78 158.05 161.78 155.63 156.11 155.63 156.11 160.65 150.84 160.65 150.84 146.59 145.17 146.59 145.17 109.63 139.49 109.63 139.49 113.67 133.82 113.67 133.82 61.48 128.15 61.48 128.15 80.59 123.11 80.59 123.11 93.23 117.44 93.23 117.44 97.97 111.76 97.97 111.76 78.07 106.09 78.07 106.09 61.66 100.42 61.66 100.42 93.23 94.75 93.23 94.75 98.51 89.7 98.51 89.7 85.4 84.03 85.4 84.03 111.03 78.99 111.03 78.99 120.57 73.32 120.57 73.32 124.14 67.65 124.14 67.65 23.48 61.97 23.48 61.97 0 56.3 0 56.3 120.57 50.63 120.57 50.63 167.01 45.38 167.01 45.38 170.83 39.71 170.83 39.71 172.26 34.03 172.26 34.03 178.7 28.36 178.7 28.36 175.36 22.69 175.36 22.69 170.83 17.02 170.83 17.02 172.26 11.34 172.26 11.34 178.7 5.67 178.7 5.67 103.85 0 103.85 0 200 399.84 200"/></svg>
Has anyone an idea how to program that? It doesn't necessarily need to be based on p5.js, but would be cool.

Closing Gaps
In order to have a gapless histogram, you need to meet the following condition:
numberOfBars * barWidth === totalWidth
Right now you are using the p5 line() function to draw your bars. You have not explicitly set the width of your bars, so it uses the default value of 1px wide.
We know that the numberOfBars in your code is always maxRange which is 256.
Right now the total width of your histogram is width - 20, where width is set to 400 by createCanvas(400, 400). So the totalWidth is 380.
256 * 1 !== 380
If you have 256 pixels of bars in a 380 pixel space then there are going to be gaps!
We need to change the barWidth and/or the totalWidth to balance the equation.
For example, you can change your canvas size to 276 (256 + your 20px margin) and the gaps disappear!
createCanvas(276, 400);
However this is not an appropriate solution because now your image is cropped and your pixel data is wrong. But actually...it was already wrong before!
Sampling Pixels
When you call the global loadPixels() function in p5.js you are loading all of the pixels for the whole canvas. This includes the white areas outside of your image.
for (var x = 0; x < img.width; x += 5) {
for (var y = 0; y < img.height; y += 5) {
var loc = (x + y * img.width) * 4;
It is a 1-dimensional array, so your approach of limiting the x and y values here is not giving you the correct position. Your loc variable needs to use the width of the entire canvas rather than the width of just the image, since the pixels array includes the entire canvas.
var loc = (x + y * width) * 4;
Alternatively, you can look at just the pixels of the image by using img.loadPixels() and img.pixels.
img.loadPixels();
for (var x = 0; x < img.width; x += 5) {
for (var y = 0; y < img.height; y += 5) {
var loc = (x + y * img.width) * 4;
var h = img.pixels[loc];
var s = img.pixels[loc + 1];
var l = img.pixels[loc + 2];
var a = img.pixels[loc + 3];
b = int(l);
histogram[b]++;
}
}
The pixel values are always returned in RGBA regardless of the colorMode. So your third channel value is actually the blue, not the lightness. You can make use of the p5.js lightness() function to compute the lightness from the RGBA.
Updated Code
The actual lightness histogram looks dumb because 100% dwarfs all of the other bars.
function preload() {
img = loadImage("https://upload.wikimedia.org/wikipedia/commons/thumb/3/36/Cirrus_sky_panorama.jpg/1200px-Cirrus_sky_panorama.jpg");
}
function setup() {
const barCount = 100;
const imageHeight = 200;
createCanvas(400, 400);
background(255);
colorMode(HSL, barCount - 1);
img.resize(0, imageHeight);
imageMode(CENTER);
image(img, width / 2, imageHeight / 2);
img.loadPixels();
const histogram = new Array(barCount).fill(0);
for (let x = 0; x < img.width; x += 5) {
for (let y = 0; y < img.height; y += 5) {
const loc = (x + y * img.width) * 4;
const r = img.pixels[loc];
const g = img.pixels[loc + 1];
const b = img.pixels[loc + 2];
const a = img.pixels[loc + 3];
const barIndex = floor(lightness([r, g, b, a]));
histogram[barIndex]++;
}
}
fill(300, 100, 80);
strokeWeight(0);
const maxCount = max(histogram);
const barWidth = width / barCount;
const histogramHeight = height - imageHeight;
for (let i = 0; i < barCount; i++) {
const count = histogram[i];
const y1 = round(map(count, 0, maxCount, height, imageHeight));
const y2 = height;
const x1 = i * barWidth;
const x2 = x1 + barWidth;
rect(x1, y1, barWidth, height - y1);
}
}
<script src="https://cdn.jsdelivr.net/npm/p5#1.4.1/lib/p5.js"></script>
But the blue channel histogram looks pretty good!
function preload() {
img = loadImage("https://upload.wikimedia.org/wikipedia/commons/thumb/3/36/Cirrus_sky_panorama.jpg/1200px-Cirrus_sky_panorama.jpg");
}
function setup() {
const barCount = 100;
const imageHeight = 200;
createCanvas(400, 400);
background(255);
img.resize(0, imageHeight);
imageMode(CENTER);
image(img, width / 2, imageHeight / 2);
img.loadPixels();
const histogram = new Array(barCount).fill(0);
for (let x = 0; x < img.width; x += 5) {
for (let y = 0; y < img.height; y += 5) {
const loc = (x + y * img.width) * 4;
const r = img.pixels[loc];
const g = img.pixels[loc + 1];
const b = img.pixels[loc + 2];
const a = img.pixels[loc + 3];
const barIndex = floor(barCount * b / 255);
histogram[barIndex]++;
}
}
fill(100, 100, 300);
strokeWeight(0);
const maxCount = max(histogram);
const barWidth = width / barCount;
const histogramHeight = height - imageHeight;
for (let i = 0; i < barCount; i++) {
const count = histogram[i];
const y1 = round(map(count, 0, maxCount, height, imageHeight));
const y2 = height;
const x1 = i * barWidth;
const x2 = x1 + barWidth;
rect(x1, y1, barWidth, height - y1);
}
}
<script src="https://cdn.jsdelivr.net/npm/p5#1.4.1/lib/p5.js"></script>

Just to add to Linda's excellent answer(+1), you can use p5.svg to render to SVG using p5.js:
let histogram;
function setup() {
createCanvas(660, 210, SVG);
background(255);
noStroke();
fill("#ed225d");
// make an array of 256 random values in the (0, 255) range
histogram = Array.from({length: 256}, () => int(random(255)));
//console.log(histogram);
// plot the histogram
barPlot(histogram, 0, 0, width, height);
// change shape rendering so bars appear connected
document.querySelector('g').setAttribute('shape-rendering','crispEdges');
// save the plot
save("histogram.svg");
}
function barPlot(values, x, y, plotWidth, plotHeight){
let numValues = values.length;
// calculate the width of each bar in the plot
let barWidth = plotWidth / numValues;
// calculate min/max value (to map height)
let minValue = min(values);
let maxValue = max(values);
// for each value
for(let i = 0 ; i < numValues; i++){
// map the value to the plot height
let barHeight = map(values[i], minValue, maxValue, 0, plotHeight);
// render each bar, offseting y
rect(x + (i * barWidth),
y + (plotHeight - barHeight),
barWidth, barHeight);
}
}
<script src="https://unpkg.com/p5#1.3.1/lib/p5.js"></script>
<script src="https://unpkg.com/p5.js-svg#1.0.7"></script>
(In the p5 editor (or when testing locally) a save dialog should pop up.
If you use the browser's Developer Tools to inspect the bar chart it should confirm it's an SVG (not <canvas/>))

Related

Calculate distance between parameters and target image

How can I calculate distance between a fixed parameter and a target image/pixel?
The following code does color recognition, finds the average position, and draws circle on it. It is able to find if the target (averageX and averageY) is close to leftPd, centerPd, or rightPd. I want to change this code as lane tracking which is at least able to find distance value between leftPd parameter variable and left lane or rightPd parameter variable and right lane.
import processing.video.*;
Capture video;
float threshold = 210;
color trackColor;
PVector leftP, centerP, rightP, target;
void setup() {
leftP = new PVector (80,420);
centerP = new PVector (width/2, 380);
rightP = new PVector (560,420);
size(640, 480);
video = new Capture(this, width, height);
video.start();
trackColor = color(160,0,0); // Start off tracking for red
}
void captureEvent(Capture video) {
// Read image from the camera
video.read();
}
void draw() {
loadPixels();
video.loadPixels();
image(video, 0, 0);
float avgX = 0;
float avgY = 0;
int count = 0;
for (int x = 0; x < video.width; x ++ ) {
for (int y = 0; y < video.height; y ++ ) {
int loc = x + y*video.width;
color currentColor = video.pixels[loc];
float r1 = red(currentColor);
float g1 = green(currentColor);
float b1 = blue(currentColor);
float r2 = red(trackColor);
float g2 = green(trackColor);
float b2 = blue(trackColor);
// Using euclidean distance to compare colors
float d = distSq(r1, g1, b1, r2, g2, b2);
if (d < threshold) {
stroke(255);
strokeWeight(1);
point(x,y);
avgX += x;
avgY += y;
count++;
}
}
}
if (count > 0) {
avgX = avgX / count;
avgY = avgY / count;
// Draw a circle at the tracked pixel
fill(trackColor);
strokeWeight(4.0);
stroke(0);
ellipse(avgX, avgY, 20, 20);
text("brightnesslevel: " + trackColor, 20, 60);
text("FPS: " + frameRate, 20, 80);
}
target = new PVector (avgX, avgY);
color c = color(255, 204, 0);
fill(c);
noStroke();
ellipse(leftP.x,leftP.y,16,16); // left param
ellipse(centerP.x,centerP.y,16,16); // center param
ellipse(rightP.x,rightP.y,16,16); // right param
float leftPd = leftP.dist(target);
float centerPd = centerP.dist(target);
float rightPd = rightP.dist(target);
if ( leftPd <= 85 ){
text("To Close left " , 20, 250);
}
if ( centerPd <= 85 ){
text("To Close turn center " , 20, 275);
}
if ( rightPd <= 85 ){
text("To Close turn right " , 20, 300);
}
}
float distSq(float x1,float y1, float z1, float x2, float y2, float z2){
float d = (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) + (z2-z1)*(z2-z1);
return d;
}
void mousePressed() {
// Save color where the mouse is clicked in trackColor variable
int loc = mouseX + mouseY*video.width;
trackColor = video.pixels[loc];
}

How can i convert a point cloud data `(x, y, z)` into a depth map where `(x, y)` has depth `z`?

I got point cloud data in the form of [(x, y, z) , (norm_x, norm_y, norm_z)] in a text file. I am trying to convert this into a png or jpg image file where any points intensity corresponds to its depth (z).
here is how an stl 3d file looks like (left). On the right is what i am trying to make.
Thank you all for taking time to read this.
x_min = -2
x_max = 2
y_min = -1
y_max = 1
z_min = 0
z_max = 1
dx = x_max - x_min
dy = y_max - y_min
dz = z_max - z_min
Ps = []
for (i = 0; i < 1000; ++i) Ps.push([x_min + Math.random()*dx, y_min + Math.random()*dy, z_min + Math.random()*dz])
width = canvas.width
height = canvas.height
context = canvas.getContext('2d')
context.setFillColor('#000000')
context.fillRect(0, 0, width, height)
imagedata = context.getImageData(0, 0, width, height)
data = imagedata.data
w = width - 1
h = height - 1
for (P of Ps) {
col = Math.round(((P[0] - x_min)/dx)*w)
row = Math.round(((y_max - P[1])/dy)*h)
val = ((P[2] - z_min)/dz)*255
i = 4*(width*row + col)
if (data[i] < val) data[i] = data[i + 1] = data[i + 2] = val
}
context.putImageData(imagedata, 0, 0)
a.href = canvas.toDataURL()
<canvas id=canvas>HTML5</canvas><br><a id=a>Download</a>

Separable gaussian blur - optimize vertical pass

I have implemented separable Gaussian blur. Horizontal pass was relatively easy to optimize with SIMD processing. However, I am not sure how to optimize vertical pass.
Accessing elements is not very cache friendly and filling SIMD lane would mean reading many different pixels. I was thinking about transpose the image and run horizontal pass and then transpose image back, however, I am not sure if it will gain any improvement because of two tranpose operations.
I have quite large images 16k resolution and kernel size is 19, so vectorization of vertical pass gain was about 15%.
My Vertical pass is as follows (it is sinde generic class typed to T which can be uint8_t or float):
int yStart = kernelHalfSize;
int xStart = kernelHalfSize;
int yEnd = input.GetWidth() - kernelHalfSize;
int xEnd = input.GetHeigh() - kernelHalfSize;
const T * inData = input.GetData().data();
V * outData = output.GetData().data();
int kn = kernelHalfSize * 2 + 1;
int kn4 = kn - kn % 4;
for (int y = yStart; y < yEnd; y++)
{
size_t yW = size_t(y) * output.GetWidth();
size_t outX = size_t(xStart) + yW;
size_t xEndSimd = xStart;
int len = xEnd - xStart;
len = len - len % 4;
xEndSimd = xStart + len;
for (int x = xStart; x < xEndSimd; x += 4)
{
size_t inYW = size_t(y) * input.GetWidth();
size_t x0 = ((x + 0) - kernelHalfSize) + inYW;
size_t x1 = x0 + 1;
size_t x2 = x0 + 2;
size_t x3 = x0 + 3;
__m128 sumDot = _mm_setzero_ps();
int i = 0;
for (; i < kn4; i += 4)
{
__m128 kx = _mm_set_ps1(kernelDataX[i + 0]);
__m128 ky = _mm_set_ps1(kernelDataX[i + 1]);
__m128 kz = _mm_set_ps1(kernelDataX[i + 2]);
__m128 kw = _mm_set_ps1(kernelDataX[i + 3]);
__m128 dx, dy, dz, dw;
if constexpr (std::is_same<T, uint8_t>::value)
{
//we need co convert uint8_t inputs to float
__m128i u8_0 = _mm_loadu_si128((const __m128i*)(inData + x0));
__m128i u8_1 = _mm_loadu_si128((const __m128i*)(inData + x1));
__m128i u8_2 = _mm_loadu_si128((const __m128i*)(inData + x2));
__m128i u8_3 = _mm_loadu_si128((const __m128i*)(inData + x3));
__m128i u32_0 = _mm_unpacklo_epi16(
_mm_unpacklo_epi8(u8_0, _mm_setzero_si128()),
_mm_setzero_si128());
__m128i u32_1 = _mm_unpacklo_epi16(
_mm_unpacklo_epi8(u8_1, _mm_setzero_si128()),
_mm_setzero_si128());
__m128i u32_2 = _mm_unpacklo_epi16(
_mm_unpacklo_epi8(u8_2, _mm_setzero_si128()),
_mm_setzero_si128());
__m128i u32_3 = _mm_unpacklo_epi16(
_mm_unpacklo_epi8(u8_3, _mm_setzero_si128()),
_mm_setzero_si128());
dx = _mm_cvtepi32_ps(u32_0);
dy = _mm_cvtepi32_ps(u32_1);
dz = _mm_cvtepi32_ps(u32_2);
dw = _mm_cvtepi32_ps(u32_3);
}
else
{
/*
//load 8 consecutive values
auto dd = _mm256_loadu_ps(inData + x0);
//extract parts by shifting and casting to 4 values float
dx = _mm256_castps256_ps128(dd);
dy = _mm256_castps256_ps128(_mm256_permutevar8x32_ps(dd, _mm256_set_epi32(0, 0, 0, 0, 4, 3, 2, 1)));
dz = _mm256_castps256_ps128(_mm256_permutevar8x32_ps(dd, _mm256_set_epi32(0, 0, 0, 0, 5, 4, 3, 2)));
dw = _mm256_castps256_ps128(_mm256_permutevar8x32_ps(dd, _mm256_set_epi32(0, 0, 0, 0, 6, 5, 4, 3)));
*/
dx = _mm_loadu_ps(inData + x0);
dy = _mm_loadu_ps(inData + x1);
dz = _mm_loadu_ps(inData + x2);
dw = _mm_loadu_ps(inData + x3);
}
//calculate 4 dots at once
//[dx, dy, dz, dw] <dot> [kx, ky, kz, kw]
auto mx = _mm_mul_ps(dx, kx); //dx * kx
auto my = _mm_fmadd_ps(dy, ky, mx); //mx + dy * ky
auto mz = _mm_fmadd_ps(dz, kz, my); //my + dz * kz
auto res = _mm_fmadd_ps(dw, kw, mz); //mz + dw * kw
sumDot = _mm_add_ps(sumDot, res);
x0 += 4;
x1 += 4;
x2 += 4;
x3 += 4;
}
for (; i < kn; i++)
{
auto v = _mm_set_ps1(kernelDataX[i]);
auto v2 = _mm_set_ps(
*(inData + x3), *(inData + x2),
*(inData + x1), *(inData + x0)
);
sumDot = _mm_add_ps(sumDot, _mm_mul_ps(v, v2));
x0++;
x1++;
x2++;
x3++;
}
sumDot = _mm_mul_ps(sumDot, _mm_set_ps1(weightX));
if constexpr (std::is_same<V, uint8_t>::value)
{
__m128i asInt = _mm_cvtps_epi32(sumDot);
asInt = _mm_packus_epi32(asInt, asInt);
asInt = _mm_packus_epi16(asInt, asInt);
uint32_t res = _mm_cvtsi128_si32(asInt);
((uint32_t *)(outData + outX))[0] = res;
outX += 4;
}
else
{
float tmpRes[4];
_mm_store_ps(tmpRes, sumDot);
outData[outX + 0] = tmpRes[0];
outData[outX + 1] = tmpRes[1];
outData[outX + 2] = tmpRes[2];
outData[outX + 3] = tmpRes[3];
outX += 4;
}
}
for (int x = xEndSimd; x < xEnd; x++)
{
int kn = kernelHalfSize * 2 + 1;
const T * v = input.GetPixelStart(x - kernelHalfSize, y);
float tmp = 0;
for (int i = 0; i < kn; i++)
{
tmp += kernelDataX[i] * v[i];
}
tmp *= weightX;
outData[outX] = ImageUtils::clamp_cast<V>(tmp);
outX++;
}
}
There’s a well-known trick for that.
While you compute both passes, read them sequentially, use SIMD to compute, but write out the result into another buffer, transposed, using scalar stores. Protip: SSE 4.1 has _mm_extract_ps just don’t forget to cast your destination image pointer from float* into int*. Another thing about these stores, I would recommend using _mm_stream_si32 for that as you want maximum cache space used by your input data. When you’ll be computing the second pass, you’ll be reading sequential memory addresses again, the prefetcher hardware will deal with the latency.
This way both passes will be identical, I usually call same function twice, with different buffers.
Two transposes caused by your 2 passes cancel each other. Here’s an HLSL version, BTW.
There’s more. If your kernel size is only 19, that fits in 3 AVX registers. I think shuffle/permute/blend instructions are still faster than even L1 cache loads, i.e. it might be better to load the kernel outside the loop.

What's the best way to fit a set of points in an image one or more good lines using RANSAC using OpenCV?

What's the best way to fit a set of points in an image one or more good lines using RANSAC using OpenCV?
Is RANSAC is the most efficient way to fit a line?
RANSAC is not the most efficient but it is better for a large number of outliers. Here is how to do it using opencv:
A useful structure-
struct SLine
{
SLine():
numOfValidPoints(0),
params(-1.f, -1.f, -1.f, -1.f)
{}
cv::Vec4f params;//(cos(t), sin(t), X0, Y0)
int numOfValidPoints;
};
Total Least squares used to make a fit for a successful pair
cv::Vec4f TotalLeastSquares(
std::vector<cv::Point>& nzPoints,
std::vector<int> ptOnLine)
{
//if there are enough inliers calculate model
float x = 0, y = 0, x2 = 0, y2 = 0, xy = 0, w = 0;
float dx2, dy2, dxy;
float t;
for( size_t i = 0; i < nzPoints.size(); ++i )
{
x += ptOnLine[i] * nzPoints[i].x;
y += ptOnLine[i] * nzPoints[i].y;
x2 += ptOnLine[i] * nzPoints[i].x * nzPoints[i].x;
y2 += ptOnLine[i] * nzPoints[i].y * nzPoints[i].y;
xy += ptOnLine[i] * nzPoints[i].x * nzPoints[i].y;
w += ptOnLine[i];
}
x /= w;
y /= w;
x2 /= w;
y2 /= w;
xy /= w;
//Covariance matrix
dx2 = x2 - x * x;
dy2 = y2 - y * y;
dxy = xy - x * y;
t = (float) atan2( 2 * dxy, dx2 - dy2 ) / 2;
cv::Vec4f line;
line[0] = (float) cos( t );
line[1] = (float) sin( t );
line[2] = (float) x;
line[3] = (float) y;
return line;
}
The actual RANSAC
SLine LineFitRANSAC(
float t,//distance from main line
float p,//chance of hitting a valid pair
float e,//percentage of outliers
int T,//number of expected minimum inliers
std::vector<cv::Point>& nzPoints)
{
int s = 2;//number of points required by the model
int N = (int)ceilf(log(1-p)/log(1 - pow(1-e, s)));//number of independent trials
std::vector<SLine> lineCandidates;
std::vector<int> ptOnLine(nzPoints.size());//is inlier
RNG rng((uint64)-1);
SLine line;
for (int i = 0; i < N; i++)
{
//pick two points
int idx1 = (int)rng.uniform(0, (int)nzPoints.size());
int idx2 = (int)rng.uniform(0, (int)nzPoints.size());
cv::Point p1 = nzPoints[idx1];
cv::Point p2 = nzPoints[idx2];
//points too close - discard
if (cv::norm(p1- p2) < t)
{
continue;
}
//line equation -> (y1 - y2)X + (x2 - x1)Y + x1y2 - x2y1 = 0
float a = static_cast<float>(p1.y - p2.y);
float b = static_cast<float>(p2.x - p1.x);
float c = static_cast<float>(p1.x*p2.y - p2.x*p1.y);
//normalize them
float scale = 1.f/sqrt(a*a + b*b);
a *= scale;
b *= scale;
c *= scale;
//count inliers
int numOfInliers = 0;
for (size_t i = 0; i < nzPoints.size(); ++i)
{
cv::Point& p0 = nzPoints[i];
float rho = abs(a*p0.x + b*p0.y + c);
bool isInlier = rho < t;
if ( isInlier ) numOfInliers++;
ptOnLine[i] = isInlier;
}
if ( numOfInliers < T)
{
continue;
}
line.params = TotalLeastSquares( nzPoints, ptOnLine);
line.numOfValidPoints = numOfInliers;
lineCandidates.push_back(line);
}
int bestLineIdx = 0;
int bestLineScore = 0;
for (size_t i = 0; i < lineCandidates.size(); i++)
{
if (lineCandidates[i].numOfValidPoints > bestLineScore)
{
bestLineIdx = i;
bestLineScore = lineCandidates[i].numOfValidPoints;
}
}
if ( lineCandidates.empty() )
{
return SLine();
}
else
{
return lineCandidates[bestLineIdx];
}
}
Take a look at Least Mean Square metod. It's faster and simplier than RANSAC.
Also take look at OpenCV's fitLine method.
RANSAC performs better when you have a lot of outliers in your data, or a complex hypothesis.

BlackBerry Bitmap Rotation

i tried to rotate Bitmap in BlackBerry in Two Ways
1 -
public static Bitmap rotateImage(Bitmap oldB, int angle) {
int w = oldB.getWidth();
int h = oldB.getHeight();
double angRad = (angle % 360) * (Math.PI / 180);
Bitmap newB = new Bitmap(w, h);
int[] oldD = new int[w * h];
int[] newD = new int[w * h];
oldB.getARGB(oldD, 0, w, 0, 0, w, h);
int axisX = w / 2;
int axisY = h / 2;
for (int x = 0; x < oldD.length; x++) {
int oldX = x % w;
int oldY = x / w;
int op = oldX - axisX;
int adj = oldY - axisY;
double oldT = MathUtilities.atan2(op, adj);
double rad = Math.sqrt((op * op) + (adj * adj));
double newT = oldT + angRad;
int newX = (int) MathUtilities.round((rad * Math.sin(newT))
+ (double) axisX);
int newY = (int) MathUtilities.round((rad * Math.cos(newT))
+ (double) axisY);
if (newX < 0 || newY < 0 || newX >= w || newY >= h) {
newD[x] = 0x00000000;
} else {
newD[x] = oldD[(newY * w) + newX];
}
}
newB.setARGB(newD, 0, w, 0, 0, w, h);
return newB;
}
2 - the second way using drawTexturedPath
------ the function
private void drawRotatedBitmap(Graphics graphics, Bitmap bm, int angle,
int x, int y) {
int w = bm.getWidth();
int h = bm.getHeight();
double a = Math.toRadians(angle);
int x1 = (int) (x - h * Math.sin(a));
int y1 = (int) (y + h * Math.cos(a));
int x2 = (int) (x1 + w * Math.cos(a));
int y2 = (int) (y1 + w * Math.sin(a));
int x3 = (int) (x + w * Math.cos(a));
int y3 = (int) (y + w * Math.sin(a));
int xPts[] = { x, x1, x2, x3 };
int yPts[] = { y, y1, y2, y3 };
int fAngle = Fixed32.toFP(angle);
int dvx = Fixed32.cosd(fAngle);
int dux = -Fixed32.sind(fAngle);
int dvy = Fixed32.sind(fAngle);
int duy = Fixed32.cosd(fAngle);
graphics.drawTexturedPath(xPts, yPts, null, null, 0, 0, dux, dvx, duy,
dvy, bm);
}
------ How to invoke
Graphics graphics = Graphics.create(circleBmp);
drawRotatedBitmap(graphics, , 45, 0, 0);
circleBitmapField.setBitmap(circleBmp);
The First way is too slow , and the second way draw the Bitmap in wrong position
can any one help me to adjust any way of them ? or have another way to rotate bitmap fast and accurate .
Thanks for help .....
You need tu use ImageManipulator class. Find here an 'how to' document.

Resources