Binary Exploitation - ASLR - memory

This is more so just a general question about how ASLR actually prevents Buffer Overflow. The statement I keep seeing is that it randomises the address space of the Stack and the excecutable. It then goes on to say that for this exploit to work the location of the excecutable and stack are needed. Thats the part I am getting confused on, all of the examples I have seen off Bufferoverflow dont trouble themselves with finding the location of these things.
This is one of the examples I looked at and all the other ones are pretty much the same, It doesnt mention or do anything to do with the location of the Stack or excecutables.
Here is the link to the example in case the answer is there and I am not understanding something:
https://www.coengoedegebure.com/buffer-overflow-attacks-explained/#:~:text=A%20buffer%20overflow%20occurs%20when,possibly%20taking%20over%20the%20machine.
Sorry if this is a dumb question
#include <string.h>
void func(char *name)
{
char buf[100];
strcpy(buf, name);
printf("Welcome %s\n", buf);
}
int main(int argc, char *argv[])
{
func(argv[1]);
return 0;
}

Okay, so once we do a buffer overflow, we want to redirect control flow to something that we know.
Let's make this really simple and assume that the stack itself is executable. We could pop a reverse shell using this, for example. But, how do we run this shellcode, exactly?
So, what we want to do is overflow the buffer, change the return address on the stack to point to the stack itself (in particular, the offset of the stack where this shellcode exists, we could find these offsets using gdb for example).
But, how do we know where the stack is exactly?
A long time ago, before ASLR, the stack was always in a particular spot, so we could just use gdb (for example) to find where the stack was, and just change the return pointer to point to the stack (in particular, where our shellcode is).
But, with ASLR, we either need to brute force the stack position, along with NOP sleds (assuming we have enough room), or achieve address disclosure of the stack through another bug.

Related

FreeRTOS - The reason for the stack increase?

I have created several tasks, the body of which is the same function. Inside the function, there is a delay that is the same for every task. So, when this delay is large enough, the stack of each task is filled with 6 words less than when the delay is less.
As far as I understand, the stack of tasks increases when there is a situation with several tasks with the status Ready.
1.In this situation, some additional 6-word context is written to the task stack?
2.In my example, it turns out 6 words (24 bytes), can this value change somehow?
3.What else can affect the increase in the stack, such as jumping into an interrupt handler?
int main(void){
xTaskCreate(Task_PrintCountString, "Task_1", mySTACK_SIZE, &param1, 1, NUUL);
xTaskCreate(Task_PrintCountString, "Task_2", mySTACK_SIZE, &param2, 1, NUUL);
xTaskCreate(Task_PrintCountString, "Task_3", mySTACK_SIZE, &param3, 1, NUUL);
vTaskStartScheduler();
}
#define myDELAY 100
void Task_PrintCountString(void *pParams){
uint16_t c=0;
for(;;){
if(xSemaphoreTake(WriteCountMutex, portMAX_DELAY) == pdTRUE){
PrintCountString(*(uint8_t *)pParams, c++);
xSemaphoreGive(WriteCountMutex);
}
vTaskDelay(myDELAY/portTICK_PERIOD_MS);//When myDELAY=1, the task stack is 6 words more than when myDELAY= 100!
}
}
Address 0x20000158 is the top of the stack for one of the tasks. Similarly, others!
The only function PrintCountString always the same depth. But at the same time, the stack can grow to its maximum knowledge in several stages, going through dozens of iterations of the task cycle! It turns out that not only the context is saved to the stack, but something else?
P.S.
I use ARM CM0 port and heap_1.
I made an observation:
In the PrintCountString function there was a block for waiting for the SPI flag - while(). I replaced the DMA transfer method and removed the while() loop. The stack of both tasks began to fill up immediately to the maximum value, regardless of delays.
FreeRTOS is just C code so, with one exception, the stack usage is determined by the compiler, including the selected optimisation level. The one exception be that when a task is not running its context is saved to its stack. The context size is fixed in all cases that matter. The size of the context depends on which FreeRTOS port you are using (there are more than 40).
There are a few things in your post I'm not sure about.
when this delay is large enough, the stack of each task is filled with
6 words less than when the delay is less
As above, the C code doesn't change depending on how long a delay you have - the compiler knows nothing about FreeRTOS or the concept of a delay. You may see different stack depths depending on where the code was in the call tree when an interrupt occurs (including interrupts that cause context switches).
I look at the top of the stack and count the remaining number of bytes
to be 0xA5
You don't say which port you are using, so I don't know if the stack grows up or down. In any case the stack is filled with 0xa5 when the task is created but never touched by the kernel again so the number of 0xa5s left shows the maximum amount of stack the task has used since it was created. That value is returned by calling uxTaskGetStackHighWaterMark().
In general the stack memory is used by the microcontroller itself. There are several instructions which writes/reads some data to/from the stack.
The PUSH instruction copies the content of one register to the stack and modifies the stack pointer register
The POP instruction reads a word from the stack into a register and modifies the stack pointer register
Both instructions are managed by the compiler. If a functions is executed the compiler creates some PUSH instructions to "free" some registers to work with. At the end of the function the original register state will be restored using the POP instructions to guarantee the upcoming control flow.
and each branch instruction stores several register values to the stack
The amount of used stack memory depends on the call hierarchy.
According to your example, if the SemaphoreTake function is called and finds a released semaphore the call hierarchy is different from a situation where the semaphore is blocked. This creates a different stack usage.

The stack should grow to a low address, why the result of my code test is to grow to a high address

#include <stdio.h>
int main() {
int a = 0;
int b = 0;
int c = 0;
int d = 0;
printf("%p\n", &a);
printf("%p\n", &b);
printf("%p\n", &c);
printf("%p\n", &d);
return 0;
}
The results is:
0x7fff822a2678
0x7fff822a267c
0x7fff822a2680
0x7fff822a2684
Does this answer your question Does stack grow upward or downward? ?
The behavior of stack (growing up or growing down) depends on the application binary interface (ABI) and how the call stack (aka activation record) is organized.
Throughout its lifetime a program is bound to communicate with other programs like OS. ABI determines how a program can communicate with another program.
The stack for different architectures can grow the either way, but for an architecture it will be consistent. Please check this wiki link. But, the stack's growth is decided by the ABI of that architecture.
The compiler is free to allocate local (auto) variables at any place on the local stack frame, you cannot reliably infer the stack growing direction purely from that. You can infer the stack grow direction from comparing the addresses of nested stack frames, ie comparing the address of a local variable inside the stack frame of a function compared to it's callee

Heap overflow exploit

I understand that overflow exploitation requires three steps:
1.Injecting arbitrary code (shellcode) into target process memory space.
2.Taking control over eip.
3.Set eip to execute arbitrary code.
I read ben hawkens articles about heap exploitation and understood few tactics about how to ultimatly override a function pointer to point to my code.
In other words, I understand step 2.
I do not understand step 1 and 3.
How do I inject my code to the process memory space ?
During step 3 I override a function pointer with a
Pointer to my shellcode, How can I calculate\know what address
Was my injected code injected into ? (This problem is solved
In stackoverflow by using "jmp esp).
In a heap overflow, supposing that the system does not have ASLR activated, you will know the address of the memory chunks (aka, the buffers) you use in the overflow.
One option is to place the shellcode where the buffer is, given that you can control the contents of the buffer (as the application user). Once you have placed the shellcode bytes in the buffer, you only have to jump to that buffer address.
One way to perform that jump is by, for example, overwriting a .dtors entry. Once the vulnerable program finishes, the shellcode - placed in the buffer - will be executed. The complicated part is the .dtors overwriting. For that you will have to use the published heap exploiting techniques.
The prerequisites are that ASLR is deactivated (to know the address of the buffer before executing the vulnerable program) and that the memory region where the buffer is placed must be executable.
On more thing, steps 2 and 3 are the same. If you control eip, it's logic that you will point it to the shellcode (the arbitrary code).
P.S.: Bypassing ASLR is more complex.
Step 1 requires a vulnerability in the attacked code.
Common vulnerabilites include:
buffer overflow (common i C code, happens if the program reads an arbitrary long string into a fixed buffer)
evaluation of unsanitized data (common in SQL and script languages, but can occur in other languages as well)
Step 3 requires detailed knowledge of the target architecture.
How do I inject my code into process space?
This is quite a statement/question. It requires an 'exploitable' region of code in said process space. For example, Windows is currently rewriting most strcpy() to strncpy() if at all possible. I say if possible
because not all areas of code that use strcpy can successfully be changed over to strncpy. Why? BECAUSE ~# of this crux in difference shown below;
strcpy($buffer, $copied);
or
strncpy($buffer, $copied, sizeof($copied));
This is what makes strncpy so difficult to implement in real world scenarios. There has to be installed a 'magic number' on most strncpy operations (the sizeof() operator creates this magic number)
As coders' we are taught using hard coded values such as a strict compliance with a char buffer[1024]; is really bad coding practise.
BUT ~ in comparison - using buffer[]=""; or buffer[1024]=""; is the heart of the exploit. HOWEVER, if for example we change this code to the latter we get another exploit introduced into the system...
char * buffer;
char * copied;
strcpy(buffer, copied);//overflow this right here...
OR THIS:
int size = 1024;
char buffer[size];
char copied[size];
strncpy(buffer,copied, size);
This will stop overflows, but introduce a exploitable region in RAM due to size being predictable and structured into 1024 blocks of code/data.
Therefore, original poster, looking for strcpy for example, in a program's address space, will make the program exploitable if strcpy is present.
There are many reasons why strcpy is favoured by programmers over strncpy. Magic numbers, variable input/output data size...programming styles...etc...
HOW DO I FIND MYSELF IN MY CODE (MY LOCATION)
Check various hacker books for examples of this ~
BUT, try;
label:
pop eax
pop eax
call pointer
jmp label
pointer:
mov esp, eax
jmp $
This is an example that is non-working due to the fact that I do NOT want to be held responsible for writing the next Morris Worm! But, any decent programmer will get the jist of this code and know immediately what I am talking about here.
I hope your overflow techniques work in the future, my son!

Part of pthread stack seems to be already used

I've set the stack size of a pthread in Linux to 16 KB. If I then push an array bigger than 8 KB on the stack, the applications stops with a segmentation fault. It seems to me that I am trying to access memory below the bottom of the stack, which is probably unmapped memory and hence the segfault.
Here is the sample code:
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <string.h>
void *start_routine(void *arg)
{
size_t size = 9*1024;
unsigned char arr[size];
memset(arr, 0, size);
}
int main()
{
int err;
pthread_attr_t threadAttr;
size_t stacksize;
void *stackAddr;
pthread_t thread;
pthread_attr_init(&threadAttr);
pthread_attr_setstacksize(&threadAttr, 16*1024);
pthread_attr_getstacksize(&threadAttr, &stacksize);
printf("stacksize: %d\n", stacksize);
pthread_create(&thread, &threadAttr, start_routine, NULL );
pthread_join(thread, NULL);
return 0;
}
It seems strange that I loose around 8 KB of stack. I tried also with slightly bigger stack sizes. Somehow it seems to vary how much of the stack I can use.
I know that for nowadays-systems (except some embedded systems) these few bytes are not really important but I'm just curious why I cannot use most of the defined stack. I do not expect that I can use the whole stack, but loosing around 8 KB seems quite much.
What information is there put on the thread's stack before the entry-routine is called?
Thanks
Philip
After some investigation in the glibc nptl source code I come to the conclusion that at the bottom of the stack there is put the pthread-struct of the thread who owns the stack and likely some other variables depending on the glibc-configuration. They use together around 3K. The top of the stack is filled with a guard page, which is typically 4K big. Thus around 7-8K are already used. I am a bit surprised that at least the memory for the guard page is not allocated separately. On the top of my head I thought to remember that that would be the case but it isn't.

How does a "stack overflow" occur and how do you prevent it?

How does a stack overflow occur and what are the ways to make sure it doesn't happen, or ways to prevent one?
Stack
A stack, in this context, is the last in, first out buffer you place data while your program runs. Last in, first out (LIFO) means that the last thing you put in is always the first thing you get back out - if you push 2 items on the stack, 'A' and then 'B', then the first thing you pop off the stack will be 'B', and the next thing is 'A'.
When you call a function in your code, the next instruction after the function call is stored on the stack, and any storage space that might be overwritten by the function call. The function you call might use up more stack for its own local variables. When it's done, it frees up the local variable stack space it used, then returns to the previous function.
Stack overflow
A stack overflow is when you've used up more memory for the stack than your program was supposed to use. In embedded systems you might only have 256 bytes for the stack, and if each function takes up 32 bytes then you can only have function calls 8 deep - function 1 calls function 2 who calls function 3 who calls function 4 .... who calls function 8 who calls function 9, but function 9 overwrites memory outside the stack. This might overwrite memory, code, etc.
Many programmers make this mistake by calling function A that then calls function B, that then calls function C, that then calls function A. It might work most of the time, but just once the wrong input will cause it to go in that circle forever until the computer recognizes that the stack is overblown.
Recursive functions are also a cause for this, but if you're writing recursively (ie, your function calls itself) then you need to be aware of this and use static/global variables to prevent infinite recursion.
Generally, the OS and the programming language you're using manage the stack, and it's out of your hands. You should look at your call graph (a tree structure that shows from your main what each function calls) to see how deep your function calls go, and to detect cycles and recursion that are not intended. Intentional cycles and recursion need to be artificially checked to error out if they call each other too many times.
Beyond good programming practices, static and dynamic testing, there's not much you can do on these high level systems.
Embedded systems
In the embedded world, especially in high reliability code (automotive, aircraft, space) you do extensive code reviews and checking, but you also do the following:
Disallow recursion and cycles - enforced by policy and testing
Keep code and stack far apart (code in flash, stack in RAM, and never the twain shall meet)
Place guard bands around the stack - empty area of memory that you fill with a magic number (usually a software interrupt instruction, but there are many options here), and hundreds or thousands of times a second you look at the guard bands to make sure they haven't been overwritten.
Use memory protection (ie, no execute on the stack, no read or write just outside the stack)
Interrupts don't call secondary functions - they set flags, copy data, and let the application take care of processing it (otherwise you might get 8 deep in your function call tree, have an interrupt, and then go out another few functions inside the interrupt, causing the blowout). You have several call trees - one for the main processes, and one for each interrupt. If your interrupts can interrupt each other... well, there be dragons...
High-level languages and systems
But in high level languages run on operating systems:
Reduce your local variable storage (local variables are stored on the stack - although compilers are pretty smart about this and will sometimes put big locals on the heap if your call tree is shallow)
Avoid or strictly limit recursion
Don't break your programs up too far into smaller and smaller functions - even without counting local variables each function call consumes as much as 64 bytes on the stack (32 bit processor, saving half the CPU registers, flags, etc)
Keep your call tree shallow (similar to the above statement)
Web servers
It depends on the 'sandbox' you have whether you can control or even see the stack. Chances are good you can treat web servers as you would any other high level language and operating system - it's largely out of your hands, but check the language and server stack you're using. It is possible to blow the stack on your SQL server, for instance.
A stack overflow in real code occurs very rarely. Most situations in which it occurs are recursions where the termination has been forgotten. It might however rarely occur in highly nested structures, e.g. particularly large XML documents. The only real help here is to refactor the code to use an explicit stack object instead of the call stack.
Most people will tell you that a stack overflow occurs with recursion without an exit path - while mostly true, if you work with big enough data structures, even a proper recursion exit path won't help you.
Some options in this case:
Breadth-first search
Tail recursion, .Net-specific great blog post (sorry, 32-bit .Net)
Infinite recursion is a common way to get a stack overflow error. To prevent - always make sure there's an exit path that will be hit. :-)
Another way to get a stack overflow (in C/C++, at least) is to declare some enormous variable on the stack.
char hugeArray[100000000];
That'll do it.
Aside from the form of stack overflow that you get from a direct recursion (eg Fibonacci(1000000)), a more subtle form of it that I have experienced many times is an indirect recursion, where a function calls another function, which calls another, and then one of those functions calls the first one again.
This can commonly occur in functions that are called in response to events but which themselves may generate new events, for example:
void WindowSizeChanged(Size& newsize) {
// override window size to constrain width
newSize.width=200;
ResizeWindow(newSize);
}
In this case the call to ResizeWindow may cause the WindowSizeChanged() callback to be triggered again, which calls ResizeWindow again, until you run out of stack. In situations like these you often need to defer responding to the event until the stack frame has returned, eg by posting a message.
Usually a stack overflow is the result of an infinite recursive call (given the usual amount of memory in standard computers nowadays).
When you make a call to a method, function or procedure the "standard" way or making the call consists on:
Pushing the return direction for the call into the stack(that's the next sentence after the call)
Usually the space for the return value get reserved into the stack
Pushing each parameter into the stack (the order diverges and depends on each compiler, also some of them are sometimes stored on the CPU registers for performance improvements)
Making the actual call.
So, usually this takes a few bytes depeding on the number and type of the parameters as well as the machine architecture.
You'll see then that if you start making recursive calls the stack will begin to grow. Now, stack is usually reserved in memory in such a way that it grows in opposite direction to the heap so, given a big number of calls without "coming back" the stack begins to get full.
Now, on older times stack overflow could occur simply because you exausted all available memory, just like that. With the virtual memory model (up to 4GB on a X86 system) that was out of the scope so usually, if you get an stack overflow error, look for an infinite recursive call.
I have recreated the stack overflow issue while getting a most common Fibonacci number i.e. 1, 1, 2, 3, 5..... so calculation for fib(1) = 1 or fib(3) = 2.. fib(n) = ??.
for n, let say we will interested - what if n = 100,000 then what will be the corresponding Fibonacci number ??
The one loop approach is as below -
package com.company.dynamicProgramming;
import java.math.BigInteger;
public class FibonacciByBigDecimal {
public static void main(String ...args) {
int n = 100000;
BigInteger[] fibOfnS = new BigInteger[n + 1];
System.out.println("fibonacci of "+ n + " is : " + fibByLoop(n));
}
static BigInteger fibByLoop(int n){
if(n==1 || n==2 ){
return BigInteger.ONE;
}
BigInteger fib = BigInteger.ONE;
BigInteger fip = BigInteger.ONE;
for (int i = 3; i <= n; i++){
BigInteger p = fib;
fib = fib.add(fip);
fip = p;
}
return fib;
}
}
this quite straight forward and result is -
fibonacci of 100000 is : 2597406934722172416615503402127591541488048538651769658472477070395253454351127368626555677283671674475463758722307443211163839947387509103096569738218830449305228763853133492135302679278956701051276578271635608073050532200243233114383986516137827238124777453778337299916214634050054669860390862750996639366409211890125271960172105060300350586894028558103675117658251368377438684936413457338834365158775425371912410500332195991330062204363035213756525421823998690848556374080179251761629391754963458558616300762819916081109836526352995440694284206571046044903805647136346033000520852277707554446794723709030979019014860432846819857961015951001850608264919234587313399150133919932363102301864172536477136266475080133982431231703431452964181790051187957316766834979901682011849907756686456845066287392485603914047605199550066288826345877189410680370091879365001733011710028310473947456256091444932821374855573864080579813028266640270354294412104919995803131876805899186513425175959911520563155337703996941035518275274919959802257507902037798103089922984996304496255814045517000250299764322193462165366210841876745428298261398234478366581588040819003307382939500082132009374715485131027220817305432264866949630987914714362925554252624043999615326979876807510646819068792118299167964409178271868561702918102212679267401362650499784968843680975254700131004574186406448299485872551744746695651879126916993244564817673322257149314967763345846623830333820239702436859478287641875788572910710133700300094229333597292779191409212804901545976262791057055248158884051779418192905216769576608748815567860128818354354292307397810154785701328438612728620176653953444993001980062953893698550072328665131718113588661353747268458543254898113717660519461693791688442534259478126310388952047956594380715301911253964847112638900713362856910155145342332944128435722099628674611942095166100230974070996553190050815866991144544264788287264284501725332048648319457892039984893823636745618220375097348566847433887249049337031633826571760729778891798913667325190623247118037280173921572390822769228077292456662750538337500692607721059361942126892030256744356537800831830637593334502350256972906515285327194367756015666039916404882563967693079290502951488693413799125174856667074717514938979038653338139534684837808612673755438382110844897653836848318258836339917310455850905663846202501463131183108742907729262215943020429159474030610183981685506695026197376150857176119947587572212987205312060791864980361596092339594104118635168854883911918517906151156275293615849000872150192226511785315089251027528045151238603792184692121533829287136924321527332714157478829590260157195485316444794546750285840236000238344790520345108033282013803880708980734832620122795263360677366987578332625485944906021917368867786241120562109836985019729017715780112040458649153935115783499546100636635745448508241888279067531359950519206222976015376529797308588164873117308237059828489404487403932053592935976454165560795472477862029969232956138971989467942218727360512336559521133108778758228879597580320459608479024506385194174312616377510459921102486879496341706862092908893068525234805692599833377510390101316617812305114571932706629167125446512151746802548190358351688971707570677865618800822034683632101813026232996027599403579997774046244952114531588370357904483293150007246173417355805567832153454341170020258560809166294198637401514569572272836921963229511187762530753402594781448204657460288485500062806934811398276016855584079542162057543557291510641537592939022884356120792643705560062367986544382464373946972471945996555795505838034825597839682776084731530251788951718630722761103630509360074262261717363058613291544024695432904616258691774630578507674937487992329181750163484068813465534370997589353607405172909412697657593295156818624747127636468836551757018353417274662607306510451195762866349922848678780591085118985653555434958761664016447588028633629704046289097067736256584300235314749461233912068632146637087844699210427541569410912246568571204717241133378489816764096924981633421176857150311671040068175303192115415611958042570658693127276213710697472226029655524611053715554532499750843275200199214301910505362996007042963297805103066650638786268157658772683745128976850796366371059380911225428835839194121154773759981301921650952140133306070987313732926518169226845063443954056729812031546392324981793780469103793422169495229100793029949237507299325063050942813902793084134473061411643355614764093104425918481363930542369378976520526456347648318272633371512112030629233889286487949209737847861884868260804647319539200840398308008803869049557419756219293922110825766397681361044490024720948340326796768837621396744075713887292863079821849314343879778088737958896840946143415927131757836511457828935581859902923534388888846587452130838137779443636119762839036894595760120316502279857901545344747352706972851454599861422902737291131463782045516225447535356773622793648545035710208644541208984235038908770223039849380214734809687433336225449150117411751570704561050895274000206380497967960402617818664481248547269630823473377245543390519841308769781276565916764229022948181763075710255793365008152286383634493138089971785087070863632205869018938377766063006066757732427272929247421295265000706646722730009956124191409138984675224955790729398495608750456694217771551107346630456603944136235888443676215273928597072287937355966723924613827468703217858459948257514745406436460997059316120596841560473234396652457231650317792833860590388360417691428732735703986803342604670071717363573091122981306903286137122597937096605775172964528263757434075792282180744352908669606854021718597891166333863858589736209114248432178645039479195424208191626088571069110433994801473013100869848866430721216762473119618190737820766582968280796079482259549036328266578006994856825300536436674822534603705134503603152154296943991866236857638062351209884448741138600171173647632126029961408561925599707566827866778732377419444462275399909291044697716476151118672327238679208133367306181944849396607123345271856520253643621964198782752978813060080313141817069314468221189275784978281094367751540710106350553798003842219045508482239386993296926659221112742698133062300073465628498093636693049446801628553712633412620378491919498600097200836727876650786886306933418995225768314390832484886340318940194161036979843833346608676709431643653538430912157815543512852077720858098902099586449602479491970687230765687109234380719509824814473157813780080639358418756655098501321882852840184981407690738507369535377711880388528935347600930338598691608289335421147722936561907276264603726027239320991187820407067412272258120766729040071924237930330972132364184093956102995971291799828290009539147382437802779051112030954582532888721146170133440385939654047806199333224547317803407340902512130217279595753863158148810392952475410943880555098382627633127606718126171022011356181800775400227516734144169216424973175621363128588281978005788832454534581522434937268133433997710512532081478345067139835038332901313945986481820272322043341930929011907832896569222878337497354301561722829115627329468814853281922100752373626827643152685735493223028018101449649009015529248638338885664893002250974343601200814365153625369199446709711126951966725780061891215440222487564601554632812091945824653557432047644212650790655208208337976071465127508320487165271577472325887275761128357592132553934446289433258105028633583669291828566894736223508250294964065798630809614341696830467595174355313224362664207197608459024263017473392225291248366316428006552870975051997504913009859468071013602336440164400179188610853230764991714372054467823597211760465153200163085336319351589645890681722372812310320271897917951272799656053694032111242846590994556380215461316106267521633805664394318881268199494005537068697621855231858921100963441012933535733918459668197539834284696822889460076352031688922002021931318369757556962061115774305826305535862015637891246031220672933992617378379625150999935403648731423208873977968908908369996292995391977217796533421249291978383751460062054967341662833487341011097770535898066498136011395571584328308713940582535274056081011503907941688079197212933148303072638678631411038443128215994936824342998188719768637604496342597524256886188688978980888315865076262604856465004322896856149255063968811404400429503894245872382233543101078691517328333604779262727765686076177705616874050257743749983775830143856135427273838589774133526949165483929721519554793578923866762502745370104660909382449626626935321303744538892479216161188889702077910448563199514826630802879549546453583866307344423753319712279158861707289652090149848305435983200771326653407290662016775706409690183771201306823245333477966660525325490873601961480378241566071271650383582257289215708209369510995890132859490724306183325755201208090007175022022949742801823445413711916298449914722254196594682221468260644961839254249670903104007581488857971672246322887016438403908463856731164308169537326790303114583680575021119639905615169154708510459700542098571797318015564741406172334145847111268547929892443001391468289103679179216978616582489007322033591376706527676521307143985302760988478056216994659655461379174985659739227379416726495377801992098355427866179123126699374730777730569324430166839333011554515542656864937492128687049121754245967831132969248492466744261999033972825674873460201150442228780466124320183016108232183908654771042398228531316559685688005226571474428823317539456543881928624432662503345388199590085105211383124491861802624432195540433985722841341254409411771722156867086291742124053110620522842986199273629406208834754853645128123279609097213953775360023076765694208219943034648783348544492713539450224591334374664937701655605763384697062918725745426505879414630176639760457474311081556747091652708748125267159913793240527304613693961169892589808311906322510777928562071999459487700611801002296132304588294558440952496611158342804908643860880796440557763691857743754025896855927252514563404385217825890599553954627451385454452916761042969267970893580056234501918571489030418495767400819359973218711957496357095967825171096264752068890806407651445893132870767454169607107931692704285168093413311046353506242209810363216771910420786162184213763938194625697286781413636389620123976910465418956806197323148414224550071617215851321302030684176087215892702098879108938081045903397276547326416916845445627600759561367103584575649094430692452532085003091068783157561519847567569191284784654692558665111557913461272425336083635131342183905177154511228464455136016013513228948543271504760839307556100908786096663870612278690274831819331606701484957163004705262228238406266818448788374548131994380387613830128859885264201992286188208499588640888521352501457615396482647451025902530743172956899636499615707551855837165935367125448515089362904567736630035562457374779100987992499146967224041481601289530944015488942613783140087804311431741858071826185149051138744831358439067228949408258286021650288927228387426432786168690381960530155894459451808735197246008221529343980828254126128257157209350985382800738560472910941184006084485235377833503306861977724501886364070344973366473100602018128792886991861824418453968994777259482169137133647470453172979809245844361129618997595696240971845564020511432589591844724920942930301651488713079802102379065536525154780298059407529440513145807551537794861635879901158192019808879694967187448224156836463534326160242632934761634458163890163805123894184523973421841496889262398489648642093409816681494771155177009562669029850101513537599801272501241971119871526593747484778935488777815192931171431167444773882941064615028751327709474504763922874890662989841540259350834035142035136168819248238998027706666916342133424312054507359388616687691188185776118135771332483965209882085982391298606386822804754362408956522921410859852037330544625953261340234864689275060526893755148403298542086991221052597005628576707702567695300978970046408920009852106980295419699802138053295798159478289934443245491565327845223840551240445208226435420656313310702940722371552770504263482073984454889589248861397657079145414427653584572951329719091947694411910966797474262675590953832039169673494261360032263077428684105040061351052194413778158095005714526846009810352109249040027958050736436961021241137739717164869525493114805040126568351268829598413983222676377804500626507241731757395219796890754825199329259649801627068665658030178877405615167159731927320479376247375505855052839660294566992522173600874081212014209071041937598571721431338017425141582491824710905084715977249417049320254165239323233258851588893337097136310892571531417761978326033750109026284066415801371359356529278088456305951770081443994114674291850360748852366654744869928083230516815711602911836374147958492100860528981469547750812338896943152861021202736747049903930417035171342126923486700566627506229058636911882228903170510305406882096970875545329369434063981297696478031825451642178347347716471058423238594580183052756213910186997604305844068665712346869679456044155742100039179758348979935882751881524675930878928159243492197545387668305684668420775409821781247053354523194797398953320175988640281058825557698004397120538312459428957377696001857497335249965013509368925958021863811725906506436882127156815751021712900765992750370228283963962915973251173418586721023497317765969454283625519371556009143680329311962842546628403142444370648432390374906410811300792848955767243481200090309888457270907750873638873299642555050473812528975962934822878917619920725138309388288292510416837622758204081918933603653875284116785703720989718832986921927816629675844580174911809119663048187434155067790863948831489241504300476704527971283482211522202837062857314244107823792513645086677566622804977211397140621664116324756784216612961477109018826094677377686406176721484293894976671380122788941309026553511096118347012565197540807095384060916863936906673786627209429434264260402902158317345003727462588992622049877121178405563348492490326003508569099382392777297498413565614830788262363322368380709822346012274241379036473451735925215754757160934270935192901723954921426490691115271523338109124042812102893738488167358953934508930697715522989199698903885883275409044300321986834003470271220020159699371690650330547577095398748580670024491045504890061727189168031394528036165633941571334637222550477547460756055024108764382121688848916940371258901948490685379722244562009483819491532724502276218589169507405794983759821006604481996519360110261576947176202571702048684914616894068404140833587562118319210838005632144562018941505945780025318747471911604840677997765414830622179069330853875129298983009580277554145435058768984944179136535891620098725222049055183554603706533183176716110738009786625247488691476077664470147193074476302411660335671765564874440577990531996271632972009109449249216456030618827772947750764777446452586328919159107444252320082918209518021083700353881330983215894608680127954224752071924134648334963915094813097541433244209299930751481077919002346128122330161799429930618800533414550633932139339646861616416955220216447995417243171165744471364197733204899365074767844149929548073025856442942381787641506492878361767978677158510784235702640213388018875601989234056868423215585628508645525258377010620532224244987990625263484010774322488172558602233302076399933854152015343847725442917895130637050320444917797752370871958277976799686113626532291118629631164685159934660693460557545956063155830033697634000276685151293843638886090828376141157732003527565158745906567025439437931104838571313294490604926582363108949535090082673154497226396648088618041573977888472892174618974189721700770009862449653759012727015227634510874906948012210684952063002519011655963580552429180205586904259685261047412834518466736938580027700252965356366721619883672428226933950325930390994583168665542234654857020875504617520521853721567282679903418135520602999895366470106557900532129541336924472492212436324523042895188461779122338069674233980694887270587503389228395095135209123109258159006960395156367736067109050566299603571876423247920752836160805597697778756476767210521222327184821484446631261487584226092608875764331731023263768864822594691211032367737558122133470556805958008310127481673962019583598023967414489867276845869819376783757167936723213081586191045995058970991064686919463448038574143829629547131372173669836184558144505748676124322451519943362182916191468026091121793001864788050061351603144350076189213441602488091741051232290357179205497927970924502479940842696158818442616163780044759478212240873204124421169199805572649118243661921835714762891425805771871743688000324113008704819373962295017143090098476927237498875938639942530595331607891618810863505982444578942799346514915952884869757488025823353571677864826828051140885429732788197765736966005727700162592404301688659946862983717270595809808730901820120931003430058796552694788049809205484305467611034654748067290674399763612592434637719995843862812391985470202414880076880818848087892391591369463293113276849329777201646641727587259122354784480813433328050087758855264686119576962172239308693795757165821852416204341972383989932734803429262340722338155102209101262949249742423271698842023297303260161790575673111235465890298298313115123607606773968998153812286999642014609852579793691246016346088762321286205634215901479188632194659637483482564291616278532948239313229440231043277288768139550213348266388687453259281587854503890991561949632478855035090289390973718988003999026132015872678637873095678109625311008054489418857983565902063680699643165033912029944327726770869305240718416592070096139286401966725750087012218149733133695809600369751764951350040285926249203398111014953227533621844500744331562434532484217986108346261345897591234839970751854223281677187215956827243245910829019886390369784542622566912542747056097567984857136623679023878478161201477982939080513150258174523773529510165296934562786122241150783587755373348372764439838082000667214740034466322776918936967612878983488942094688102308427036452854504966759697318836044496702853190637396916357980928865719935397723495486787180416401415281489443785036291071517805285857583987711145474240156416477194116391354935466755593592608849200546384685403028080936417250583653368093407225310820844723570226809826951426162451204040711501448747856199922814664565893938488028643822313849852328452360667045805113679663751039248163336173274547275775636810977344539275827560597425160705468689657794530521602315939865780974801515414987097778078705357058008472376892422189750312758527140173117621279898744958406199843913365680297721208751934988504499713914285158032324823021340630312586072624541637765234505522051086318285359658520708173392709566445011404055106579055037417780393351658360904543047721422281816832539613634982525215232257690920254216409657452618066051777901592902884240599998882753691957540116954696152270401280857579766154722192925655963991820948894642657512288766330302133746367449217449351637104725732980832812726468187759356584218383594702792013663907689741738962252575782663990809792647011407580367850599381887184560094695833270775126181282015391041773950918244137561999937819240362469558235924171478702779448443108751901807414110290370706052085162975798361754251041642244867577350756338018895379263183389855955956527857227926155524494739363665533904528656215464288343162282921123290451842212532888101415884061619939195042230059898349966569463580186816717074818823215848647734386780911564660755175385552224428524049468033692299989300783900020690121517740696428573930196910500988278523053797637940257968953295112436166778910585557213381789089945453947915927374958600268237844486872037243488834616856290097850532497036933361942439802882364323553808208003875741710969289725499878566253048867033095150518452126944989251596392079421452606508516052325614861938282489838000815085351564642761700832096483117944401971780149213345335903336672376719229722069970766055482452247416927774637522135201716231722137632445699154022395494158227418930589911746931773776518735850032318014432883916374243795854695691221774098948611515564046609565094538115520921863711518684562543275047870530006998423140180169421109105925493596116719457630962328831271268328501760321771680400249657674186927113215573270049935709942324416387089242427584407651215572676037924765341808984312676941110313165951429479377670698881249643421933287404390485538222160837088907598277390184204138197811025854537088586701450623578513960109987476052535450100439353062072439709976445146790993381448994644609780957731953604938734950026860564555693224229691815630293922487606470873431166384205442489628760213650246991893040112513103835085621908060270866604873585849001704200923929789193938125116798421788115209259130435572321635660895603514383883939018953166274355609970015699780289236362349895374653428746875
Now another approach I have applied is through Divide and Concur via recursion
i.e. Fib(n) = fib(n-1) + Fib(n-2) and then further recursion for n-1 & n-2.....till 2 & 1. which is programmed as -
package com.company.dynamicProgramming;
import java.math.BigInteger;
public class FibonacciByBigDecimal {
public static void main(String ...args) {
int n = 100000;
BigInteger[] fibOfnS = new BigInteger[n + 1];
System.out.println("fibonacci of "+ n + " is : " + fibByDivCon(n, fibOfnS));
}
static BigInteger fibByDivCon(int n, BigInteger[] fibOfnS){
if(fibOfnS[n]!=null){
return fibOfnS[n];
}
if (n == 1 || n== 2){
fibOfnS[n] = BigInteger.ONE;
return BigInteger.ONE;
}
// creates 2 further entries in stack
BigInteger fibOfn = fibByDivCon(n-1, fibOfnS).add( fibByDivCon(n-2, fibOfnS)) ;
fibOfnS[n] = fibOfn;
return fibOfn;
}
}
When i ran the code for n = 100,000 the result is as below -
Exception in thread "main" java.lang.StackOverflowError
at com.company.dynamicProgramming.FibonacciByBigDecimal.fibByDivCon(FibonacciByBigDecimal.java:29)
at com.company.dynamicProgramming.FibonacciByBigDecimal.fibByDivCon(FibonacciByBigDecimal.java:29)
at com.company.dynamicProgramming.FibonacciByBigDecimal.fibByDivCon(FibonacciByBigDecimal.java:29)
Above you can see the StackOverflowError is created. Now the reason for this is too many recursion as -
// creates 2 further entries in stack
BigInteger fibOfn = fibByDivCon(n-1, fibOfnS).add( fibByDivCon(n-2, fibOfnS)) ;
So each entry in stack create 2 more entries and so on... which is represented as -
Eventually so many entries will be created that system is unable to handle in the stack and StackOverflowError thrown.
For Prevention :
For Above example perspective
Avoid using recursion approach or reduce/limit the recursion by again one level division like if n is too large then split the n so that system can handle with in its limit.
Use other approach, like the loop approach I have used in 1st code sample. (I am not at all intended to degrade Divide & Concur or Recursion as they are legendary approaches in many most famous algorithms.. my intention is to limit or stay away from recursion if I suspect stack overflow issues)
Considering this was tagged with "hacking", I suspect the "stack overflow" he's referring to is a call stack overflow, rather than a higher level stack overflow such as those referenced in most other answers here. It doesn't really apply to any managed or interpreted environments such as .NET, Java, Python, Perl, PHP, etc, which web apps are typically written in, so your only risk is the web server itself, which is probably written in C or C++.
Check out this thread:
https://stackoverflow.com/questions/7308/what-is-a-good-starting-point-for-learning-buffer-overflow
Stack overflow occurs when your program uses up the entire stack. The most common way this happens is when your program has a recursive function which calls itself forever. Every new call to the recursive function takes more stack until eventually your program uses up the entire stack.

Resources