Boundary Recognition and Processing of Complex Graphics - opencv

Recently, I used opencv to do a project on wheel size recognition. Now encounter this problem:
1 For the threshold processing of grayscale images, I don't know if the function cv2.adaptiveThreshold() should be used, because according to my experiments, the use of the above functions may make the boundary of the hub larger and affect the accuracy of detection.
2 When using Canny to process the edge of the image, I don't know how much upper and lower to choose. It is a waste of time to randomly choose the number to try.
3 The outer circle of the hub and the outline of the inner hole cannot be effectively identified, and the detection results are shown in the following figure:
My English is not very good, thank you for reading and answering, thank you very much! !
Attached code:
def midpoint(ptx, pty):
return ((ptx[0] + pty[0]) * 0.5, ptx[1] + pty[1] * 0.5)
image = cv2.imread('picture.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 转化成灰度图
blur = cv2.GaussianBlur(gray, (3,3), 0) # 高斯模糊
thresh = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 29, 10)
kernel_size = (10,10)
edged = cv2.dilate(thresh.copy(),None, iterations=1)
edged = cv2.erode(edged.copy(),None,iterations=1)
cv2.imshow('orig', blur)
cv2.imshow('edged', edged)
cv2.waitKey(0)

Related

Detecting a very indistinct triangle on a dial using OpenCV

So I have a temperature box where I am trying to pinpoint the coordinate location of a small triangle on each temperature dial. Here are the examples of the box with slight variations:
[
I have been able to isolate each dial, get their outlines and centers. I then have an algorithm that will generate an angle measure from the center point and then the eventually found point on the triangle. However, I have been unable, so to speak, "find" solely the triangle using OpenCV. I've been able to outline it and such but cannot figure out how to isolate just it's lines. I have tried multiple shape detection and edge detection blocks of code but have had no luck because its so lightly raised from the actual dial. If I can just get a point on the dial that would be good enough even.
There are several possible approaches you can try in order to find the direction of the dial. In this answer I will try it with classic contour detection. However a well trained ML model can be much more robust and reliable in different lighting conditions. But of course it is more effort to set it up.
Let's say that you already have isolated the dial and know its radius and center. Starting from there the straight forward approach would be:
Prepare the image for thresholding:
If the image is of low resolution as in our case, scale it up by some reasonable factor
If the image is of high resolution, blur it to reduce noise
Convert it to grayscale
Apply adaptiveThresholding or Canny, in this case use the first one
Only keep areas that are of interest:
In this case only keep the features in a circular range where the triangle is supposed to be
In this case only keep the contour with the largest area
Derive the result:
In this case just get the centroid of the largest contour
Code:
import cv2
import numpy as np
# read image, scale it up by some factor and apply adaptive thresholding
img = cv2.imread("img_red.jpg")
h, w, _ = img.shape
f = 8
img = cv2.resize(img, (w * f, h * f))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(gray, 255,
cv2.cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 71, 5)
cv2.imwrite("thresh.png", thresh)
# only examine circle where the triangle is supposed to be
mask = np.zeros_like(thresh)
cv2.circle(mask, (int(w * f / 2), int(h * f / 2)), int(w * f / 3), 255, int(w * f / 6))
thresh = cv2.bitwise_and(thresh, mask)
cv2.imwrite("thresh_mask.png", thresh)
# get contours, derive contour with largest area and get centroid
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if contours:
m = max([(c, cv2.contourArea(c)) for c in contours], key=lambda i: i[1])[0]
M = cv2.moments(m)
if M['m00'] > 0:
x = round(M['m10'] / M['m00'])
y = round(M['m01'] / M['m00'])
# draw small red circle at centroid
cv2.circle(img, (x, y), 2 * f, (0, 0, 255), f)
cv2.imwrite("out.png", img)
Results:

Detecting a sheet of paper inside an image like cam-scanner app

Out of an image, I need to extract a sheet of paper, just like camscanner app does, https://www.camscanner.com/
I know that I can do this by detecting the edges of the sheet of paper i want to detect. And later performing perspective transform. I use openCV library in python.
This is the image in which I'm trying to find the sheet of paper:
Here is what I already tried:
Method 1:
(using thresholding)
Preprocessing the image with image smoothening (guassian
blur/bilateral blur)
splitting image into h,s,v channels
adaptive thresholding on the saturation channel
some morphological operations like dilation and erosion
finding contours, identifying the largest contour and finding the
corner points
I've implemented this method based on a stackoverflow answer:
Detecting a sheet of paper / Square Detection
I'm able to find the paper sheet for some images, but it fails for images like this:
Method 2:
(using sobel gradient operator)
Preprocessing the image by converting into grayscale, image smoothening (guassian
blur/bilateral blur)
Finding the gradients of the image
downsampling and upsampling the image
After this I don't know how to find the appropriate boundary enclosing the image.
I've implemented this method based on a stackoverflow answer:
detect paper from background almost same as paper color
Here's how far I got with the image:
Method 3:
(using canny edge detector)
According to the posts I've read on this community seems that everyone prefers canny edge method to extract the edges, but in my case the results are not satisfactory. Here's what I did:
Preprocessing the image by converting into grayscale, image smoothening (guassian
blur/bilateral blur)
Finding the edges using canny edge
some morphological operations like dilation and erosion
But the edges obtained from canny are really not up to the mark.
I've implemented this method based on a stackoverflow answer:
Detecting a sheet of paper / Square Detection, also I didn't quite what he does by iterating over multiple channels in this answer.
Here's how far I got with the image:
Here's some code on the method1(thresholding):
#READING IMAGE INTO BGR SPACE
image = cv2.imread("./images/sheet3.png")
#BILATERAL FILTERING TO SMOOTHEN THE IMAGE BUT NOT THE EDGES
img = cv2.bilateralFilter(image,20,75,75)
#CONVERTING BGR TO HSV
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
#SPLITTING THE HSV CHANNELS
h,s,v = cv2.split(hsv)
#DOUBLING THE SATURATION CHANNEL
gray_s = cv2.addWeighted(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 0.0, s, 2.0, 0)
#THRESHOLDING USING ADAPTIVETHRESHOLDING
threshed = cv2.adaptiveThreshold(gray_s, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 109, 10)
#APPLYING MORPHOLOGICAL OPERATIONS OF DILATION AND EROSION
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
morph = cv2.morphologyEx(threshed, cv2.MORPH_OPEN, kernel)
#FINDING ALL THE CONTOURS
cnts = cv2.findContours(morph, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[-2]
canvas = img.copy()
#SORTING THE CONTOURS AND TAKING THE LARGEST CONTOUR
cnts = sorted(cnts, key = cv2.contourArea)
cnt = cnts[-1]
#FINDING THE PERIMETER OF THE CONTOUR
arclen = cv2.arcLength(cnt, True)
#FINDING THE END POINTS OF THE CONTOUR BY APPROX POLY DP
approx = cv2.approxPolyDP(cnt, 0.02* arclen, True)
cv2.drawContours(canvas, [cnt], -1, (255,0,0), 1, cv2.LINE_AA)
cv2.drawContours(canvas, [approx], -1, (0, 0, 255), 1, cv2.LINE_AA)
cv2.imwrite("detected.png", canvas)
I'm kind of new to image processing and openCV.
Please share some insights on how to take this further and obtain results more accurately. TIA.

Identifying imperfect shapes with noisy backgrounds with OpenCV

I am trying to identify a rectangle underwater in a noisy environment. I implemented Canny to find the edges, and drew the found edges using cv2.circle. From here, I am trying to identify the imperfect rectangle in the image (the black one below the long rectangle that covers the top of the frame)
I have attempted multiple solutions, including thresholds, blurs and resizing the image to detect the rectangle. Below is the barebones code with just drawing the identified edges.
import numpy as np
import cv2
import imutils
img_text = 'img5.png'
img = cv2.imread(img_text)
original = img.copy()
min_value = 50
max_value = 100
# draw image and return coordinates of drawn pixels
image = cv2.Canny(img, min_value, max_value)
indices = np.where(image != 0)
coordinates = zip(indices[1], indices[0])
for point in coordinates:
cv2.circle(original, point, 1, (0, 0, 255), -1)
cv2.imshow('original', original)
cv2.waitKey(0)
cv2.destroyAllWindows()
Where the output displays this:
output
From here I want to be able to separately detect just the rectangle and draw another rectangle on top of the output in green, but I haven't been able to find a way to detect the original rectangle on its own.
For your specific image, I obtained quite good results with a simple thresholding on the blue channel.
image = cv2.imread("test.png")
t, img = cv2.threshold(image[:,:,0], 80, 255, cv2.THRESH_BINARY)
In order to adapt the threshold, I propose a simple way of varying the threshold until you get one component. I have also implemented the rectangle drawing:
def find_square(image):
markers = 0
threshold = 10
while np.amax(markers) == 0:
threshold += 5
t, img = cv2.threshold(image[:,:,0], threshold, 255, cv2.THRESH_BINARY_INV)
_, markers = cv2.connectedComponents(img)
kernel = np.ones((5,5),np.uint8)
img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
img = cv2.morphologyEx(img, cv2.MORPH_DILATE, kernel)
nonzero = cv2.findNonZero(img)
x, y, w, h = cv2.boundingRect(nonzero)
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.imshow("image", image)
And the results on the provided example images:
The idea behind this approach is based on the observation that the most information is in the blue channel. If you separate the images in the channels, you will see that in the blue channel, the dark square has the best contrast. It is also the darkest region on this channel, which is why thresholding works. The problem remains the threshold setting. Based on the above intuition, we are looking for the lowest threshold that will bring up something (and hope that it will be the square). What I did is to simply increase gradually the threshold until something appears.
Then, I applied some morphology operations to eliminate other small points that may appear after thresholding and to make the square look a bit bigger (the edges of the square are lighter, and therefore not the entire square is captured). Then is was a matter of drawing the rectangle.
The code can be made much nicer (and more efficient) by doing some statistical analysis on the histogram. Simply compute the threshold such that 5% (or some percent) of the pixels are darker. You may require do so a connected component analysis to keep the biggest blob.
Also, my usage of connectedComponents is very poor and inefficient. Again, code written in a hurry to prove the concept.

Billboard corner detection

I was trying to detect billboard images on a random background. I was able to localize the billboard using SSD, this give me approximate bounding box around the billboard. Now I want to find the exact corners of the billboard for my application. I tried using different strategies which I came across such as Harris corner detection (using Opencv), finding intersections of lines using, Canny + morphological operations + contours. The details on the output is given below.
Harris corner detection
The pseudocode for the harris corner detection is as follows:
img_patch_gray = np.float32(img_patch_gray)
harris_point = cv2.cornerHarris(img_patch_gray,2,3,0.04)
img_patch[harris_point>0.01*harris_point.max()]=[255,0,0]
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(img_patch)
Here the red dots are the corners detected by the Harris corner detection algorithm and the points of interest are encircled in green.
Using Hough line detection
Here I was trying to find the intersection of the lines and then choosing the points. Something similar to stackoverflow link, but it is very difficult to get the exact lines since billboards have text and graphics in it.
Contour based
In this approach I have used canny edge detector, followed by dilation(3*3 kernel), followed by contour.
bin_img = cv2.Canny(gray_img_patch,100,250)
bin_img = dilate(bin_img, 3)
plt.imshow(bin_img, cmap='gray')
(_,cnts, _) = cv2.findContours(bin_img.copy(),
cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:10]
cv2.drawContours(img_patch, [cnts[0]],0, (0,255,0), 1)
, . I had tried using approxPolyDp function from openCV but it was not as expected since it can also approximate larger or smaller contours by four points and in some images it might not form contours around the billboard frame.
I have used openCV 3.4 for all the image processing operations. used can be found here. Please note that the image discussed here is just for the illustration purpose and in general image can be of any billboard.
Thanks in advance, any help is appreciated.
This is a very difficult task because the image containes a lot of noise. You can get an approximation of the contour but specific corners would be very hard. I have made an example on how I would make an approximation. It may not work on other images. Maybe it will help a bit or give you a new idea. Cheers!
import cv2
import numpy as np
# Read the image
img = cv2.imread('billboard.png')
# Blur the image with a big kernel and then transform to gray colorspace
blur = cv2.GaussianBlur(img,(19,19),0)
gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY)
# Perform histogram equalization on the blur and then perform Otsu threshold
equ = cv2.equalizeHist(gray)
_, thresh = cv2.threshold(equ,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Perform opening on threshold with a big kernel (erosion followed by dilation)
kernel = np.ones((20,20),np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
# Search for contours and select the biggest one
_, contours, hierarchy = cv2.findContours(opening,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key=cv2.contourArea)
# Make a hull arround the contour and draw it on the original image
mask = np.zeros((img.shape[:2]), np.uint8)
hull = cv2.convexHull(cnt)
cv2.drawContours(mask, [hull], 0, (255,255,255),-1)
# Search for contours and select the biggest one again
_, thresh = cv2.threshold(mask,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key=cv2.contourArea)
# Draw approxPolyDP on the image
epsilon = 0.008*cv2.arcLength(cnt,True)
approx = cv2.approxPolyDP(cnt,epsilon,True)
cv2.drawContours(img, [cnt], 0, (0,255,0), 5)
# Display the image
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
Result:

Image Processing remove noise

I have the follwing image where i have to clean the picture as much as i can.
Removing the small dots around the names.
I made the following processing but without big results
blur = cv2.medianBlur(gray_image, 3)
ret3, th3 = cv2.threshold(blur, 120, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
thresh = cv2.morphologyEx(th3, cv2.MORPH_OPEN, kernel)
skimage.io.imsave('../output/processing/' + os.path.basename(image),thresh)
what can i do ?
Instead of using simple thresholding, you can use adaptive Gaussian thresholding which is robust against noise and may give better results than Otsu's binarization, assuming your noise is the same intensity as your desired text.

Resources