I dont mean that a neural network can complete the work of traditional image processing algorithm.What i want to say is if it exists a kind of neural network can use the parameters of the traditional method as input and outputs more universal parameters that dont require manual adjustment.Intuitively, my ideas are less efficient than using neural networks directly,but I don't know much about the mathematics of neural networks.
If I understood correctly, what you mean is for a traditional method (let's say thresholding), you want to find the best parameters using ann. It is possible but you have to supply so many training data which needs to be created, processed and evaluated that it will take a lot of time. AFAIK many mobile phones that have AI assisted camera use this method to find the best aperture, exposure..etc.
First of all, thank you very much. I still have two things to figure out. If I wanted to get a (or a set of) relatively optimal parameters, what data set would I need to build (such as some kind of error between input and output and threshold) ? Second, as you give an example, is it more efficient or better than traversal or Otsu to select the optimal threshold through neural networks in practice?To be honest, I wonder if this is really more efficient than training input and output directly using neural networks
For your second question, Otsu only works on cases where the histogram has two distinct peaks. Thresholding is a simple function but the cut-off value is based on your objective; there is no single "best" value valid for every case. So if you want to train a model for thresholding, I think you have to come up with separate models for each case (like a model for thresholding bright objects, another for darker ones...etc.) Maybe an additional output parameter for determining the aim works but I am not sure. Will it be more efficient and better? Depends on the case (and your definition of better). Otsu, traversal or adaptive thresholding does not work all the time (actually Otsu has very specific use cases). If they work for your case, excellent. If not, then things get messy. So to answer your question, it depends on your problem at hand.
For the first question, TBF, it is quite difficult to work with images in traditional ANNs. Images have a lot of pixels, so standard ANNs struggle with inputs. Moreover, when the location/scale of an object in the image changes, the whole pixel data changes even though the content is the same (These are the reasons why CNN's are superior to ANN's for images). For these reasons it is better to use processed metrics which contain condensed and location-invariant information. E.g. for thresholding, you can give the histogram and it returns a thresholding value. Therefore you need an ann with 256 input neurons (for an intensity histogram of 8bit grayscale image), 1 output neuron, and 1-2 middle layers with some deeply connected neurons (128 maybe?). Your training data will be a bunch of histograms as input and corresponding best threshold value for each histogram. Then once training is finished, you can give the ANN a histogram it has never seen before and it will tell you the optimal thresholding value based on its training.
what I want to do is a model that can output different parameters (parameter sets) based on different input images, so I think if you choose a good enough data set it should be somewhat universal.
Most likely, but your data set should be quite inclusive of expected images (in terms of metrics and features), which means it has to be large.
Also, I don't know much about modeling -- can I use a function about the output/parameters (which might be a function about the result of the traditional method) as an error in the back-propagation by create a custom loss function?
I think so, but training the model will be more involved than using predefined loss functions because, well, you have to write them. Also you have to test they work as expected.
Related
I have a fast set of multi dimensional timebased data which i suspect contain patterns. I simplified the dataset to create a custom visualization.
Humans see patterns in the visualization but the result of the pattern cannot be explained by the visualization. This is because of the simplification step, it hides data which is important.
I cannot put all my data in my visualization cause than humans cannot see the possible patterns anymore because too much data and dimensions are visualized.
Is there a technique that can detect hidden unknown patterns in a data set? (without using visualization, and without me learning the technique patterns) .
One optional extra would be that the technique should somehow be able to "explain the patterns" to me so that i can check if they make sense.
[edit] i can give the technique a collection of small sized datasets (extracted from the big dataset; still very multi dimensional) that i know that contain patterns (by using my visualization). The technique then needs to analyze under what conditions a pattern produces result a or result b.
First of, how did you "simplify" the data? If you did it without any heuristics, you might go ahead and perform PCA. The very idea of PCA is to solve your problem: Not losing "important" data while having a dimensional reduction. You can visualize your principal components so that patterns can be detected by the human eye as well as algorithms.
To your 2nd question: Yes, there are techniques that can detect hidden unknown patterns in data. However, this is a huge field (Machine Learning) and what algorithm you'd use, would depend on your problem structure, so it's impossible to give a specific model name at this point. From what you specified, neural networks in general seem fit to do the job. After you trained a network, you can visualize the activations or weights (Hinton Diagram) to perform an analysis on which input data is treated "similarly".
I am working on Soil Spectral Classification using neural networks and I have data from my Professor obtained from his lab which consists of spectral reflectance from wavelength 1200 nm to 2400 nm. He only has 270 samples.
I have been unable to train the network for accuracy more than 74% since the training data is very less (only 270 samples). I was concerned that my Matlab code is not correct, but when I used the Neural Net Toolbox in Matlab, I got the same results...nothing more than 75% accuracy.
When I talked to my Professor about it, he said that he does not have any more data, but asked me to do random perturbation on this data to obtain more data. I have research online about random perturbation of data, but have come up short.
Can someone point me in the right direction for performing random perturbation on 270 samples of data so that I can get more data?
Also, since by doing this, I will be constructing 'fake' data, I don't see how the neural network would be any better cos isn't the point of neural nets using actual real valid data to train the network?
Thanks,
Faisal.
I think trying to fabricate more data is a bad idea: you can't create anything with higher information content than you already have, unless you know the true distribution of the data to sample from. If you did, however, you'd be able to classify with the Bayes optimal error rate, which would be impossible to beat.
What I'd be looking at instead is whether you can alter the parameters of your neural net to improve performance. The thing that immediately springs to mind with small amounts of training data is your weight regulariser (are you even using regularised weights), which can be seen as a prior on the weights if you're that way inclined. I'd also look at altering the activation functions if you're using simple linear activations, and the number of hidden nodes in addition (with so few examples, I'd use very few, or even bypass the hidden layer entirely since it's hard to learn nonlinear interactions with limited data).
While I'd not normally recommend it, you should probably use cross-validation to set these hyper-parameters given the limited size, as you're going to get unhelpful insight from a 10-20% test set size. You might hold out 10-20% for final testing, however, so as to not bias the results in your favour.
First, some general advice:
Normalize each input and output variable to [0.0, 1.0]
When using a feedforward MLP, try to use 2 or more hidden layers
Make sure your number of neurons per hidden layer is big enough, so the network is able to tackle the complexity of your data
It should always be possible to get to 100% accuracy on a training set if the complexity of your model is sufficient. But be careful, 100% training set accuracy does not necessarily mean that your model does perform well on unseen data (generalization performance).
Random perturbation of your data can improve generalization performance, if the perturbation you are adding occurs in practice (or at least similar perturbation). This works because this means teaching your network on how the data could look different but still belong to the given labels.
In the case of image classification, you could rotate, scale, noise, etc. the input image (the output stays the same, naturally). You will need to figure out what kind of perturbation could apply to your data. For some problems this is difficult or does not yield any improvement, so you need to try it out. If this does not work, it does not necessarily mean your implementation or data are broken.
The easiest way to add random noise to your data would be to apply gaussian noise.
I suppose your measures have errors associated with them (a measure without errors has almost no meaning). For each measured value M+-DeltaM you can generate a new number with N(M,DeltaM), where n is the normal distribution.
This will add new points as experimental noise from previous ones, and will add help take into account exprimental errors in the measures for the classification. I'm not sure however if it's possible to know in advance how helpful this will be !
I am wondering how can I claim that I correctly catch the "noise" in my data ?
To be more specific, take Principle Component Analysis as example, we know that in PCA, after doing SVD, we can zeros out the small singular values and reconstruct the original matrix using low-rank approximation.
Then can I claim what's been ignored is indeed noise in the data ?
Is there any evaluation metric for this ?
The only method I can come up with is simply subtract the original data from the reconstructed data.
Then, try to fit a Gaussian over it, seeing if the fitness is good.
Is that conventional method in field like DSP ??
BTW, I think in typical machine learning tasks, the measurement would be the follow up classification performance, but since I am doing purely generative model, there are no labels attached.
The way I see it, the definition of noise would depend on the domain of the problem. Therefore the strategy for reducing it would be different on each domain.
For instance, having a noisy signal in problems like seismic formation classification or a noisy image on a face classification problem would be drastically different to the noise produced by improperly tagged data in a medical diagnostic problem or the noise because similar words with different meaning in a language classification problem for documents.
When the noise is because of a given (or a set of) data point, then the solution is as simple as ignore those data points (although identify those data points most of the time is the challenging part)
From your example I guess you are more concerning about the case when the noise is embedded into the features (like in the seismic example). Sometimes people tend to pre-process the data with a noise reduction filter like the median filter (http://en.wikipedia.org/wiki/Median_filter). In contrast, some other people tend to reduce the dimension of the data to reduce noise, and PCA is used in this scenario.
Both strategies are valid, and normally people try both and cross-validate them to see which one gave better results.
What you did is a good metric to check gaussian noise. However, for non-gaussian noise your metric can give you false negatives (bad fitness but still good noise reduction)
Personally, if you want to prove the efficacy of the noise reduction, I'd use a task-based evaluation. I assume you're doing this for some purpose, to solve some problem? If so, solve the task with the original noisy matrix and the new clean one. If the latter works better, what was discarded was noise, for the purposes of the task you're interested in. I think some objective measure of noise is pretty hard to define.
I have found this. it is very resoureful, needs good time to understand.
https://sci2s.ugr.es/noisydata#Introduction%20to%20Noise%20in%20Data%20Mining
I am trying to pre-process biological data to train a neural network and despite an extensive search and repetitive presentation of the various normalization methods I am none the wiser as to which method should be used when. In particular I have a number of input variables which are positively skewed and have been trying to establish whether there is a normalisation method that is most appropriate.
I was also worried about whether the nature of these inputs would affect performance of the network and as such have experimented with data transformations (log transformation in particular). However some inputs have many zeros but may also be small decimal values and seem to be highly affected by a log(x + 1) (or any number from 1 to 0.0000001 for that matter) with the resulting distribution failing to approach normal (either remains skewed or becomes bimodal with a sharp peak at the min value).
Is any of this relevant to neural networks? ie. should I be using specific feature transformation / normalization methods to account for the skewed data or should I just ignore it and pick a normalization method and push ahead?
Any advice on the matter would be greatly appreciated!
Thanks!
As features in your input vector are of different nature, you should use different normalization algorithms for every feature. Network should be feeded by uniformed data on every input for better performance.
As you wrote that some data is skewed, I suppose you can run some algoritm to "normalize" it. If applying logarithm does not work, perhaps other functions and methods such as rank transforms can be tried out.
If the small decimal values do entirely occur in a specific feature, then just normalize it in specific way, so that they get transformed into your work range: either [0, 1] or [-1, +1] I suppose.
If some inputs have many zeros, consider removing them from main neural network, and create additional neural network which will operate on vectors with non-zeroed features. Alternatively, you may try to run Principal Component Analysis (for example, via Autoassociative memory network with structure N-M-N, M < N) to reduce input space dimension and so eliminate zeroed components (they will be actually taken into account in the new combined inputs somehow). BTW, new M inputs will be automatically normalized. Then you can pass new vectors to your actual worker neural network.
This is an interesting question. Normalization is meant to keep features' values in one scale to facilitate the optimization process.
I would suggest the following:
1- Check if you need to normalize your data. If, for example, the means of the variables or features are within same scale of values, you may progress with no normalization. MSVMpack uses some normalization check condition for their SVM implementation. If, however, you need to do so, you are still advised to run the models on the data without Normalization.
2- If you know the actual maximum or minimum values of a feature, use them to normalize the feature. I think this kind of normalization would preserve the skewedness in values.
3- Try decimal value normalization with other features if applicable.
Finally, you are still advised to apply different normalization techniques and compare the MSE for evey technique including z-score which may harm the skewedness of your data.
I hope that I have answered your question and gave some support.
How should I approach a situtation when I try to apply some ML algorithm (classification, to be more specific, SVM in particular) over some high dimensional input, and the results I get are not quite satisfactory?
1, 2 or 3 dimensional data can be visualized, along with the algorithm's results, so you can get the hang of what's going on, and have some idea how to aproach the problem. Once the data is over 3 dimensions, other than intuitively playing around with the parameters I am not really sure how to attack it?
What do you do to the data? My answer: nothing. SVMs are designed to handle high-dimensional data. I'm working on a research problem right now that involves supervised classification using SVMs. Along with finding sources on the Internet, I did my own experiments on the impact of dimensionality reduction prior to classification. Preprocessing the features using PCA/LDA did not significantly increase classification accuracy of the SVM.
To me, this totally makes sense from the way SVMs work. Let x be an m-dimensional feature vector. Let y = Ax where y is in R^n and x is in R^m for n < m, i.e., y is x projected onto a space of lower dimension. If the classes Y1 and Y2 are linearly separable in R^n, then the corresponding classes X1 and X2 are linearly separable in R^m. Therefore, the original subspaces should be "at least" as separable as their projections onto lower dimensions, i.e., PCA should not help, in theory.
Here is one discussion that debates the use of PCA before SVM: link
What you can do is change your SVM parameters. For example, with libsvm link, the parameters C and gamma are crucially important to classification success. The libsvm faq, particularly this entry link, contains more helpful tips. Among them:
Scale your features before classification.
Try to obtain balanced classes. If impossible, then penalize one class more than the other. See more references on SVM imbalance.
Check the SVM parameters. Try many combinations to arrive at the best one.
Use the RBF kernel first. It almost always works best (computationally speaking).
Almost forgot... before testing, cross validate!
EDIT: Let me just add this "data point." I recently did another large-scale experiment using the SVM with PCA preprocessing on four exclusive data sets. PCA did not improve the classification results for any choice of reduced dimensionality. The original data with simple diagonal scaling (for each feature, subtract mean and divide by standard deviation) performed better. I'm not making any broad conclusion -- just sharing this one experiment. Maybe on different data, PCA can help.
Some suggestions:
Project data (just for visualization) to a lower-dimensional space (using PCA or MDS or whatever makes sense for your data)
Try to understand why learning fails. Do you think it overfits? Do you think you have enough data? Is it possible there isn't enough information in your features to solve the task you are trying to solve? There are ways to answer each of these questions without visualizing the data.
Also, if you tell us what the task is and what your SVM output is, there may be more specific suggestions people could make.
You can try reducing the dimensionality of the problem by PCA or the similar technique. Beware that PCA has two important points. (1) It assumes that the data it is applied to is normally distributed and (2) the resulting data looses its natural meaning (resulting in a blackbox). If you can live with that, try it.
Another option is to try several parameter selection algorithms. Since SVM's were already mentioned here, you might try the approach of Chang and Li (Feature Ranking Using Linear SVM) in which they used linear SVM to pre-select "interesting features" and then used RBF - based SVM on the selected features. If you are familiar with Orange, a python data mining library, you will be able to code this method in less than an hour. Note that this is a greedy approach which, due to its "greediness" might fail in cases where the input variables are highly correlated. In that case, and if you cannot solve this problem with PCA (see above), you might want to go to heuristic methods, which try to select best possible combinations of predictors. The main pitfall of this kind of approaches is the high potential of overfitting. Make sure you have a bunch "virgin" data that was not seen during the entire process of model building. Test your model on that data only once, after you are sure that the model is ready. If you fail, don't use this data once more to validate another model, you will have to find a new data set. Otherwise you won't be sure that you didn't overfit once more.
List of selected papers on parameter selection:
Feature selection for high-dimensional genomic microarray data
Oh, and one more thing about SVM. SVM is a black box. You better figure out what is the mechanism that generate the data and model the mechanism and not the data. On the other hand, if this would be possible, most probably you wouldn't be here asking this question (and I wouldn't be so bitter about overfitting).
List of selected papers on parameter selection
Feature selection for high-dimensional genomic microarray data
Wrappers for feature subset selection
Parameter selection in particle swarm optimization
I worked in the laboratory that developed this Stochastic method to determine, in silico, the drug like character of molecules
I would approach the problem as follows:
What do you mean by "the results I get are not quite satisfactory"?
If the classification rate on the training data is unsatisfactory, it implies that either
You have outliers in your training data (data that is misclassified). In this case you can try algorithms such as RANSAC to deal with it.
Your model(SVM in this case) is not well suited for this problem. This can be diagnozed by trying other models (adaboost etc.) or adding more parameters to your current model.
The representation of the data is not well suited for your classification task. In this case preprocessing the data with feature selection or dimensionality reduction techniques would help
If the classification rate on the test data is unsatisfactory, it implies that your model overfits the data:
Either your model is too complex(too many parameters) and it needs to be constrained further,
Or you trained it on a training set which is too small and you need more data
Of course it may be a mixture of the above elements. These are all "blind" methods to attack the problem. In order to gain more insight into the problem you may use visualization methods by projecting the data into lower dimensions or look for models which are suited better to the problem domain as you understand it (for example if you know the data is normally distributed you can use GMMs to model the data ...)
If I'm not wrong, you are trying to see which parameters to the SVM gives you the best result. Your problem is model/curve fitting.
I worked on a similar problem couple of years ago. There are tons of libraries and algos to do the same. I used Newton-Raphson's algorithm and a variation of genetic algorithm to fit the curve.
Generate/guess/get the result you are hoping for, through real world experiment (or if you are doing simple classification, just do it yourself). Compare this with the output of your SVM. The algos I mentioned earlier reiterates this process till the result of your model(SVM in this case) somewhat matches the expected values (note that this process would take some time based your problem/data size.. it took about 2 months for me on a 140 node beowulf cluster).
If you choose to go with Newton-Raphson's, this might be a good place to start.