When attempting to supply a fake delegate for a method with an optional parameter in a faked object
type MyType () =
abstract B: ?s:string -> unit
default x.B (?s: string) = Option.iter (printfn "Implemented: %s") s
[<Property>]
let doit () =
let a = A.Fake<MyType>()
A.CallTo(fun () -> a.B(ignored())).Invokes(fun s -> Option.iter (printfn "Faked: %s") s)
a.B "Hello"
FakeItEasy complains
FakeItEasy.Configuration.FakeConfigurationException: Argument constraint is of type System.String, but parameter is of type Microsoft.FSharp.Core.FSharpOption`1[System.String]. No call can match this constraint.
Is there a way to make this run without changing the type definition ?
OK, I was able to reproduce your error message by defining ignored as:
let ignored<'t> () = A<'t>.Ignored
The problem is that you've defined a string constraint for an argument that's actually a string option. You can work around this by explicitly naming the parameter ?s when you call the member, like this:
A.CallTo(fun () -> a.B(?s=ignored())).Invokes(fun s -> Option.iter (printfn "Faked: %s") s)
Now the constraint has the correct type, Option<string>, and the code executes without error. Output is:
Faked: Hello
This SO answer has more details about specifying values for optional arguments.
Related
I am still confused on how to read function signatures.
The Option.map signature is the following:
/// map f inp evaluates to match inp with None -> None | Some x -> Some (f x).
/// mapping: A function to apply to the option value.
/// option: The input option.
val map : mapping:('T -> 'U) -> option:'T option -> 'U option
However, I have no clue what that signature means.
I read it as the following:
There's a function called map that takes a function as an input that we'll call "mapping" and it will yield a result that is also a function that we'll call "option".
Mapping Parameter:
mapping:('T -> 'U)
The function that we pass in as input takes Titanium (i.e. 'T) as the input and yields Uranium (i.e. 'U) as output.
The Option returned
option:'T option -> 'U option
We'll call the output of the map function "option".
Thus, this "option" that is returned from executing the map function is also a function as referenced above. It's takes a Titanium option and yields a Uranium option.
Example:
type String20 = String20 of string
type Name = { First:String20
Last:String20
Suffix:String20 option }
let tryCreateName (first:string) (last:string) (suffix:string option) =
let isValid = [first; last]
|> List.forall (fun x -> x.Length > 2 && x.Length <= 20)
if isValid then
Some { First = String20(first);
Last = String20(last);
Suffix = Option.map String20 suffix }
else None
How does the following expression map:
Option.map String20 suffix
Based on the expression above, where is the "returned function" of Titanium option -> Uranium option?
First off take a look at Option.map<'T,'U> Function (F#) and notice
The expression map f inp evaluates to match inp with None -> None |
Some x -> Some (f x).
So lets convert this comment to working code. First map is a method of the type Option, but to make it easier we will make it a function outside of a type and to avoid conflicts with other map functions we will give it the name OptionMap.
let OptionMap = f inp =
match inp with
| None -> None
| Some x -> Some (f x)
Now to get the signature of this function just send it to F# Interactive
val OptionMap : f:('a -> 'b) -> inp:'a option -> 'b option
and to make the types obvious we will type the parameters of the function.
let optionMap (f : ('a -> 'b)) (inp : 'a option) : 'b option =
match inp with
| None -> None
| Some x -> Some (f x)
Now to test this we can use
let (test : String20 option) = optionMap String20 (Some("something"))
printfn "test: %A" test
// test: Some (String20 "something")
So what happened in OptionMap that allowed this to work
If we add some print statements let sees what happens
let optionMap (f : ('a -> 'b)) (inp : 'a option) : 'b option =
printfn "f: %A" f
printfn "inp: %A" inp
match inp with
| None -> None
| Some x ->
let result = Some (f x)
printfn "result: %A" result
result
we get
f: <fun:test#63>
inp: Some "something"
result: Some (String20 "something")
we see that f is a function which is String20
So how can String20 be a function?
If we send String20 to F# Interactive it gives.
> String20;;
val it : arg0:string -> String20 = <fun:clo#4>
So String20 is a function that takes a string and returns a type of String20. That smells of a constructor.
Let's test that out in F# interactive.
> let test1 = String20 "something";;
val test1 : String20 = String20 "something"
Sure enough, String20 is a constructor, but we didn't specifically create a constructor as is done in the Object-Oriented world.
You have to think of a type, even a discriminated union as having constructors. The constructors are not specifically written but do exist. So String20 is a constructor that takes one value, a string, which is a function with the correct type signature for the Option.map function.
I gave the answer a lot more detail so that one can learn a process on how to break down problems and look at the inner workings as a tool to solving these kinds of problems.
To learn more about the lower level details of how functional programming works one needs to understand lambda calculus. The best way I know to learn it is to read An Introduction To Functional Programming Through Lambda Calculus by Greg Michaelson and look at the info in the lambda calculus tag.
Also if you like the book, you should buy a copy instead of using the free version.
There are two ways of looking at it.
let f x y = x + y
// val f: x:int -> y:int -> int
One way is to say that function f takes two parameters, x of type int and y of type int, and returns an int. So I can supply two arguments and get the result:
let a = f 4 5
// val a: int = 9
The other way is that the function takes one parameter, x of type int, and returns another function, which takes one parameter, y of type int, and returns an int. So I can supply one argument and get a function as result:
let b = f 4
// val b: int -> int
Mathematically, it's always the second way - all functions are one-parameter functions. This notion is very convenient for programming with higher-order functions.
But the first way is usually more understandable to humans, so you will often see functions discussed as if they take multiple parameters.
String20 is the case constructor for the String20 Discriminated Union case. It's a function with the type string -> String20. So string takes the place of 'T, and String20 takes the place of 'U in the mapping you supply to Option.map.
Generally, if you have a function T1 -> T2 -> ... and you apply it to one parameter, you get a function T2 -> .... In the case of Option.map, T1 is itself a function, but that is of no consequence to the way the arguments are applied.
I find it confusing to call a function "option", a string "Titanium" and a type called String20 "Uranium", so I'll stick with type names.
You ask where the "returned function" that maps a string option to a String20 option is in the expression Option.map String20 suffix. It is simply
Option.map String20
Since String20 constructs a String20 from a string, Option.map String20 is a function that maps a string to a String20 if it is present, and to None otherwise.
If you write Option.map String20 suffix, this function is applied to suffix, which would be a string option. The result of this expression is a String20 option.
This function has the signature: (UnionCaseInfo -> bool) -> 'T option
let private findCase<'T> f =
match FSharpType.GetUnionCases typeof<'T> |> Array.filter f with
|[|case|] -> Some (FSharpValue.MakeUnion(case,[||]) :?> 'T)
|_ -> None
This function, which calls the above function, has the signature: int -> obj
let CreateFromId<'T> id =
match findCase (fun case -> case.Tag = id) with
| Some c -> c
| None -> failwith (sprintf "Lookup for union case by \"%d\" failed." id)
In the pattern for CreateFromId, intellisense shows that c is inferred to be of type obj, even though it shows the correct signature for findCase. Why does the type seem to have been "lost" in the pattern?
(I can workaround this by specifying the return type of CreateFromId to 'T)
Because the type parameter 'T is not referenced in the body of the function, so type inference has no way to know your intention was to name 'T the return type.
So you can either add it in the body as the return type (as you already figured it out) or remove it from the declaration:
let CreateFromId id = ...
By removing it works because F# does automatic generalization, the only different is it will use an arbitrary name for the type variable, but even if you want to name that type variable 'T what I would do is add it as a return type but no in the declaration between brackets:
let CreateFromId id : 'T = ...
The type of CreateFromId was inferred to by int -> obj because there's nothing "linking" the two 'T type arguments on your functions.
findCase is properly generic over 'T, but CreateFromId is only declared to be generic, and the generic type argument is never used.
Annotating the function with the desired type is good enough to make the types line up. You can also call findCase explicitly providing the type:
let CreateFromId<'T> id =
match findCase<'T> (fun case -> case.Tag = id) with
| Some c -> c
| None -> failwith (sprintf "Lookup for union case by \"%d\" failed." id)
Or as the other answer suggests, just drop the 'T from CreateFromId and let type inference do its thing.
In F# interactive, I can find the type of sprintf.
>sprintf;;
val it : (Printf.StringFormat<'a> -> 'a) = <fun:clo#163>
I can find the type of sprintf curried with the first parameter, if the curried function is not generic.
> sprintf "%g";;
val it : (float -> string) = <fun:it#134-16>
But if it is generic, then I get the value restriction error.
> sprintf "%A";;
error FS0030: Value restriction. The value 'it' has been inferred to have generic type
val it : ('_a -> string)
Either make the arguments to 'it' explicit or, if you do not intend for it to be generic, add a type annotation.
I can add a type annotation to get rid of the value restriction like this, specializing the function for a type, eg. DateTime.
>let f : (DateTime -> string) = sprintf "%A";;
val f : (DateTime -> string)
How can I add the type annotation without the binding? I've tried the following ...
>sprintf "%A" : (DateTime -> string);;
error FS0010: Unexpected symbol ':' in interaction. Expected incomplete structured construct at or before this point, ';', ';;' or other token.
This is a similar example but harder ...
>sprintf "%a";;
error FS0030: Value restriction. The value 'it' has been inferred to have generic type
val it : ((unit -> '_a -> string) -> '_a -> string)
Either make the arguments to 'it' explicit or, if you do not intend for it to be generic, add a type annotation.
You just need to enclose your expression in parenthesis:
open System;;
(sprintf "%A" : DateTime -> string);;
val it : (DateTime -> string) = <fun:it#2>
That way you can specify the type annotation without the binding.
What is actually happening is that fsi binds the last thing you type to a variable called it. It effectively does
let it = sprintf "%a";;
Type annotations would need to go on the left hand side of the = which you can't access. The problem is that you need a concrete type to give to any variable (in this case it). A workaround could be
(fun t:DateTime -> sprintf "%a" t)
I get the value restriction error on let makeElem in the following code:
let elemCreator (doc: XmlDocument) =
fun name (value: obj) ->
let elem = doc.CreateElement(name)
match value with
| :? seq<#XmlNode> as childs ->
childs |> Seq.iter (fun c -> elem.AppendChild(c) |> ignore)
elem
| _ -> elem.Value <- value.ToString(); elem
let doc = new XmlDocument()
let makeElem = elemCreator doc
Why I get the value restriction error if anonymous function returned from elemCreator hasn't any generic parameters?
The compiler states that the infered type of makeElem is (string -> 'a -> XmlNode). But why it infers second parameter as 'a if I've declared it as obj?
I believe that this may be the "expected" behavior (although unfortunate in this case), as a result of the compiler's generalization and condensation processes. Consider Tomas's example:
let foo (s:string) (a:obj) = a
If you were to define
let bar a = foo "test" a
then the compiler will infer the type bar : 'a -> obj because it generalizes the type of the first argument. In your case, you have the equivalent of
let bar = foo "test"
so bar is a value rather than a syntactic function. The compiler does essentially the same inference procedure, except now the value restriction applies. This is unfortunate in your case, since it means that you have to explicitly annotate makeElem with a type annotation (or make it a syntactic function).
This looks like an unexpected behavior to me. It can be demonstrated using a simpler function:
let foo (s:string) (a:obj) = a
let bar = foo "bar" // Value restriction
One possible explanation might be that the F# compiler allows you to call a function taking parameter of some type with an argument of any subtype. So, you can call foo "hi" (new A()) without explicitly casting A to obj (which used to be required some time ago).
This implicit casting could mean that the compiler actually interprets bar as something like this:
let bar a = foo "bar" (a :> obj)
...and so it thinks that the argument is generic. Anyway, this is just a speculation, so you could try sending this as a bug report to fsbugs at microsoft dot com.
(The following is based solely on observation.)
If you have a function obj -> 'a, calls to that function are not used to infer/solve the type of its argument. An illustration:
let writeLine (arg: obj) = System.Console.WriteLine(arg)
writeLine is obj -> unit
let square x =
writeLine x
x * x
In the above function x is inferred as int because of (*). If a type could be constrained by obj then this function would not work (x would be inferred as obj prior to the use of (*), which would cause an error along the lines of: type obj does not support operator (*)).
I think this behavior is a Good Thing. There's no need to restrict a type as obj because every type is already implicitly convertible to obj. This allows your program to be more generic and provides better interoperability with the .NET BCL.
In short, obj has no bearing on type inference (yay!).
I need to cast a function with the signature Thing -> Thing -> int to a Comparison<Thing>.
For example, when I have:
Array.Sort(values, mySort)
I get an error stating "This expression was expected to have type Comparison but here has type Thing -> Thing -> int"
When I try this:
Array.Sort(values, (fun (a, b) -> mySort a b))
(actually, this is by way of a wrapper object)
I get an error stating "Type constraint mismatch. The type ''a -> 'b' is not compatible with the type 'Comparison'"
How am I supposed to provide a Comparison<T>?
FYI: Comparison<T> is a delegate with the signature 'T * 'T -> int
This works for me:
let values = [|1;2;3|]
let mySort a b = 0
Array.Sort(values, mySort)
But have you tried:
Array.Sort(values, Comparison(mySort))
Oddly, despite the fact that delegate signatures are expressed in tupled form (e.g. 'T * 'T -> int), you need to provide your function in curried form (e.g. fun a b -> mySort a b). See section 6.4.2 of the spec.