What does it mean <> in method? - dart

I have this method
#override
Response<BodyType> convertResponse<BodyType, SingleItemType>(
Response response) {
final Response dynamicResponse = super.convertResponse(response);
final BodyType customBody =
_convertToCustomObject<SingleItemType>(dynamicResponse.body);
return dynamicResponse.replace<BodyType>(body: customBody);
}
What does it mean <BodyType> and <BodyType, SingleItemType> in this method?

These are called generics in Dart (in fact, they are called the same in other similar programming languages).
The main idea behind generics is that you could reuse the same code without relying on a specific data/return type. Imagine List in Dart. You could have a list of integers (List<int>), a list of strings (List<String>), a list of your custom objects (List<CustomType>) - the type is not hardcoded and it could be adjusted based on your needs.
Also, you could say that it would be easier just to use dynamic or Object types that would cover most of these cases. However, generics brings you type safety, and the method type itself becomes a parameter.
Here is the official documentation about generics.

Related

The argument type 'ListOf5' can't be assigned to the parameter type 'ListOf5'

I need to implement an abstract class function, which own a an specific data type. But I need inside my logic layer to make the attribute which is going to be passed as a dynamic data type. But when i Pass it to the function, i am sure that its data type will be as needed. So, i type (product.value.pickedImages) as ListOf5) . But it does an Exception.
The Abstract Class Code Is:
Future<Either<FireStoreServerFailures, List<String>>> uploadProductImages(
{required ListOf5<File> images});
The Implementation Code Is:
Future<Option<List<String>>> _uploadImagesToFirestorage() async {
return await productRepo
.uploadProductImages(
images: (product.value.pickedImages) as ListOf5<File>) // Exception
}
The Exception Is:
The argument type 'ListOf5 < dynamic>' can't be assigned to the
parameter type 'ListOf5 < File>'.
You are trying to cast the List from List<dynamic> to List<String>.
Instead, you should cast each item, using something like this:
void main() {
List<dynamic> a = ['qwerty'];
print(List<String>.from(a));
}
Not sure about the implementation of this ListOf5 though...
The cast (product.value.pickedImages) as ListOf5<File> fails.
It fails because product.value.pickedImages is-not-a ListOf5<File>, but instead of ListOf5<dynamic> (which may or may not currently contain only File objects, but that's not what's being checked).
Unlike a language like Java, Dart retains the type arguments at run-time(it doesn't do "erasure"), so a ListOf5<dynamic> which contains only File objects is really different from a ListOf5<File> at run-time.
You need to convert the ListOf5<dynamic> to a ListOf5<File>.
How to do that depends on the type ListOf5, which I don't know.
For a normal List, the two most common options are:
(product.value.pickedImages).cast<File>(). Wraps the existing list and checks on each read that you really do read a File. It throws if you ever read a non-File from the original list. Perfectly fine if you'll only read the list once.
List<File>.of(product.value.pickedImages). Creates a new List<File> containing the values of product.value.pickedImages, and throws if any of the values are not File objects. Requires more memory (because it copies the list), but fails early in case there is a problem, and for small lists, the overhead is unlikely to be significant. If you read the resulting list many times, it'll probably be more efficient overall.
If the ListOf5 class provides similar options, you can use those. If not, you might have to build a new ListOf5 manually, casting each element of the existing ListOf5<dynamic> yourself.
(If the ListOf5 class is your own, you can choose to add such functionality to the class).

Is there a modifiable Iterable type?

I need a modifiable collection like a List or a Set to be passed as a parameter. Using Iterable doesn't guarantee this argument to have methods like add or remove.
Example method:
void foo(Iterable bar) {
bar.add(); // The method 'add' isn't defined for the type 'Iterable'.
}
Is there a class / interface for (modifiable) collections which guarantees those methods? If not, why?
There is not a modifiable type. Very early (before Dart 1) we had some other types in our hierarchy, but we decided to avoid including them because things were getting a bit too complex.
I still wish we'd shipped a List interface without the mutation members. 🤷

Why does dart not allow method overloading?

I tried to use method overloading in some dart code and quickly learned that overloading is not offered in dart.
My questions are: why is it not offered, and what is the recommended alternative? Is there a standard naming convention since methods that do the same thing but with different inputs must have different names?
Is it standard to use named parameters and then check that the caller has supplied enough information to complete the calculation?
Say I have a method that returns how much money someone makes in a year, called yearlyIncome.
In Java, I would create a method like this
double yearlyIncome(double hourlyRate, double hoursWorkedPerYear)
And maybe another method like this
double yearlyIncome(double monthlyRate, int monthsWorkedPerYear)
and so on. They're all used to calculate the same thing, but with different inputs. What's the best, standardized way to do this in dart?
Thanks so much in advance.
Function overloading is not supported in Dart at all.
Function overloading requires static types. Dart at its core is a dynamically typed language.
You can either use different names for the methods or optional named or unnamed parameters
// optional unnamed
void foo(int a, [String b]);
foo(5);
foo(5, 'bar');
// optional named
void foo(int a, {String b});
foo(5);
foo(5, b :'bar');
Optional parameters can also have default values. Optional named and unnamed parameters can not be used together (only one or the other for a single function)
In the case of a constructor you can use named constructors as an alternative
Dart did not support overloading originally because it was a much more dynamic language where the declared types did not have any semantic effect. That made it impossible to use static type based overload resolution.
Dart has since changed to be more statically type, and there is nothing fundamentally preventing Dart from adding overloading today, except that it would be a huge work and a huge change to the language. Or so I'd assume, because there isn't any obvious design that isn't either highly complicated or hugely breaking.
What you do instead in Dart is to use optional parameters. A method like:
String toString([int radix]);
effectively have two signatures: String Function() and String Function(int). It can act at both signatures.
There are definite limits to how far you can go with just optional parameters, because they still need to have exactly one type each, but that is the alternative that Dart currently provides. (Or use different names, but that's not overloading, you can do that in languages with overloading too).
Optional parameters is also one of the complications if we wanted to add overloading to the Dart language - would existing functions with optional parameters would count as multiple overloadings? If you declare a class like:
abstract class WithOverloading {
String toString();
String toString(int radix);
}
is that then the same signature as:
abstract class WithoutOverloading {
String toString([int radix]);
}
Probably not because you can tear off the latter and get one function with an optional parameter, and you might not be able to tear off both functions from the former and combine them into one function. Or maybe you can, that's why it's not a trivial design question how to include overloading into the existing Dart language.

In Dart's Strong-Mode, can I leave off types from function definitions?

For example, I'd like to just be able to write:
class Dog {
final String name;
Dog(this.name);
bark() => 'Woof woof said $name';
}
But have #Dog.bark's type definition be () => String.
This previously wasn't possible in Dart 1.x, but I'm hoping type inference can save the day and avoid having to type trivial functions where the return type is inferable (the same as it does for closures today?)
The language team doesn't currently have any plans to do inference on member return types based on their bodies. There are definitely cases like this where it would be nice, but there are other cases (like recursive methods) where it doesn't work.
With inference, we have to balance a few opposing forces:
Having smart inference that handles lots of different cases to alleviate as much typing pain as we can.
Having some explicit type annotations so that things like API boundaries are well-defined. If you change a method body and that changes the inferred return type, now you've made a potentially breaking change to your API.
Having a simple boundary between code that is inferred and code that is not so that users can easily reason about which parts of their code are type safe and which need more attention.
The case you bring up is right at the intersection of those. Personally, I lean towards not inferring. I like my class APIs to be pretty explicitly typed anyway, since I find it makes them easier to read and maintain.
Keep in mind that there are similar cases where inference does come into play:
Dart will infer the return type of an anonymous function based on its body. That makes things like lambdas passed to map() do what you want.
It will infer the return type of a method override from the method it is overriding. You don't need to annotate the return type in Beagle.bark() here:
class Dog {
String bark() => "Bark!";
}
class Beagle extends Dog {
final String name;
Dog(this.name);
bark() => 'Woof woof said $name';
}

IList<> returned type instead of List<>

I found this method in one of examples for dependency Injecting a Controller. What is the reason of using an interface type IList<> instead of List<>?
public IList<string> GetGenreNames()
{
var genres = from genre in storeDB.Genres
select genre.Name;
return genres.ToList();
}
The actual reason, you're going to go ask the original programmer of that method that.
We can come up with a plausible reason however.
Input parameters should be as open and general as possible. Don't take an array if you can use any collection type that can be enumerated over. (ie. prefer IEnumerable<int> over List<int> if all you're going to do is do a foreach)
Output parameters and return types should be as specific as possible, but try to return the most usable and flexible data type possible without sacrificing performance or security. Don't return a collection that can only be enumerated over (like IEnumerable<int>) if you can return an array or a list you created specifically for the results (like int[] or List<int>).
These guidelines are listed many places on the internet (in different words though) and are there to help people write good APIs.
The reason why IList<T> is better than List<T> is that you're returning a collection that can be:
Enumerated over (streaming access)
Accessed by index (random access)
Modified (Add, Delete, etc.)
If you were to return List<T> you wouldn't actually add any value, except to return a concrete type instead of just any type that happens to implement that interface. As such, it is better to return the interface and not the concrete type. You don't lose any useful features on the outside and you still retain the possibility of replacing the actual object returned with something different in the future.
targeting interface is always better than targeting concrete type.
So if returning IList, that means anything implementing IList could be returned, give better separation.
check this out for more info
Why is it considered bad to expose List<T>?
It's somewhat basic rule in OOP. It's good to have an interface so your clients (the caller of GetGenreNames ) knows only how to call (function signature, only thing to remember, rather than implementation details etc) to get serviced.
Programming to interface supports all goodies of OOP. its more generalized, maintains separation of concerns, more reusable.

Resources