Set of N length generator in FSCheck - f#

I'm still learning FSCheck, and recently needed a fixed collection of unique strings.
This works, but I suspect there is a more efficient way.
Arb.generate<Set<NonEmptyString>>
|> Gen.filter (fun s -> Set.count s > 9)
|> Gen.map (Seq.truncate 10)
Is there?

It's probably more efficient to build a set that you know contains exactly N strings, like this:
let genSet genItem size =
let rec loop (items : Set<_>) =
gen {
if items.Count >= size then
return items
else
let! item = genItem
return! items.Add(item) |> loop
}
loop Set.empty
let genSetOfNonEmptyStringsOfSize10 =
genSet
Arb.generate<NonEmptyString>
10
Note that genSet will build a set of any type, not just NonEmptyStrings.

Related

Recursive function in F# that determines in a list of n elements of type int, the greater of two adjacent values

I have recently started learning f# and I have a problem with a task like the one in the subject line. I managed to solve this task but not using a recursive function. I have tried to convert my function to a recursive function but it does not work because in the function I create arrays which elements I then change. Please advise me how to convert my function to a recursive function or how else to perform this task.
let list = [8;4;3;3;5;9;-7]
let comp (a,b) = if a>b then a elif b = a then a else b
let maks (b: _ list) =
let x = b.Length
if x % 2 = 0 then
let tab = Array.create ((x/2)) 0
for i = 0 to (x/2)-1 do
tab.[i] <- (comp(b.Item(2*i),b.Item(2*i+1)))
let newlist = tab |> Array.toList
newlist
else
let tab = Array.create (((x-1)/2)+1) 0
tab.[(((x-1)/2))] <- b.Item(x-1)
for i = 0 to ((x-1)/2)-1 do
tab.[i] <- (comp(b.Item(2*i),b.Item(2*i+1)))
let newlist = tab |> Array.toList
newlist
It is worth noting that, if you were doing this not for learning purposes, there is a nice way of doing this using the chunkBySize function:
list
|> List.chunkBySize 2
|> List.map (fun l -> comp(l.[0], l.[l.Length-1]))
This splits the list into chunks of size at most 2. For each chunk, you can then compare the first element with the last element and that is the result you wanted.
If this is a homework question, I don't want to give away the answer, so consider this pseudocode solution instead:
If the list contains at least two elements:
Answer a new list consisting of:
The greater of the first two elements, followed by
Recursively applying the function to the rest of the list
Else the list contains less than two elements:
Answer the list unchanged
Hint: F#'s pattern matching ability makes this easy to implement.
Thanks to your guidance I managed to create the following function:
let rec maks2 (b: _ list,newlist: _ list,i:int) =
let x = b.Length
if x >= 2 then
if x % 2 = 0 then
if i < ((x/2)-1)+1 then
let d = (porownaj(b.Item(2*i),b.Item(2*i+1)))
let list2 = d::newlist
maks2(b,list2,i+1)
else
newlist
else
if i < ((x/2)-1)+1 then
let d = (porownaj(b.Item(2*i),b.Item(2*i+1)))
let list2 = d::newlist
maks2(b,list2,i+1)
else
let list3 = b.Item(x-1)::newlist
list3
else
b
The function works correctly, it takes as arguments list, empty list and index.
The only problem is that the returned list is reversed, i.e. values that should be at the end are at the beginning. How to add items to the end of the list?
You can use pattern matching to match and check/extract lists in one step.A typical recursive function, would look like:
let rec adjGreater xs =
match xs with
| [] -> []
| [x] -> [x]
| x::y::rest -> (if x >= y then x else y) :: adjGreater rest
It checks wether the list is empty, has one element, or has two elements and the remaining list in rest.
Then it builds a new list by either using x or y as the first element, and then compute the result of the remaing rest recursivly.
This is not tail-recursive. A tail-call optimized version would be, that instead of using the result of the recursive call. You would create a new list, and pass the computed valuke so far, to the recursive function. Usually this way, you want to create a inner recursive loop function.
As you only can add values to the top of a list, you then need to reverse the result of the recursive function like this:
let adjGreater xs =
let rec loop xs result =
match xs with
| [] -> result
| [x] -> x :: result
| x::y::rest -> loop rest ((if x >= y then x else y) :: result)
List.rev (loop xs [])

Sequence of incorrect length generated by function

Why is the following function returning a sequence of incorrect length when the repl variable is set to false?
open MathNet.Numerics.Distributions
open MathNet.Numerics.LinearAlgebra
let sample (data : seq<float>) (size : int) (repl : bool) =
let n = data |> Seq.length
// without replacement
let rec generateIndex idx =
let m = size - Seq.length(idx)
match m > 0 with
| true ->
let newIdx = DiscreteUniform.Samples(0, n-1) |> Seq.take m
let idx = (Seq.append idx newIdx) |> Seq.distinct
generateIndex idx
| false ->
idx
let sample =
match repl with
| true ->
DiscreteUniform.Samples(0, n-1)
|> Seq.take size
|> Seq.map (fun index -> Seq.item index data)
| false ->
generateIndex (seq [])
|> Seq.map (fun index -> Seq.item index data)
sample
Running the function...
let requested = 1000
let dat = Normal.Samples(0., 1.) |> Seq.take 10000
let resultlen = sample dat requested false |> Seq.length
printfn "requested -> %A\nreturned -> %A" requested resultlen
Resulting lengths are wrong.
>
requested -> 1000
returned -> 998
>
requested -> 1000
returned -> 1001
>
requested -> 1000
returned -> 997
Any idea what mistake I'm making?
First, there's a comment I want to make about coding style. Then I'll get to the explanation of why your sequences are coming back with different lengths.
In the comments, I mentioned replacing match (bool) with true -> ... | false -> ... with a simple if ... then ... else expression, but there's another coding style that you're using that I think could be improved. You wrote:
let sample (various_parameters) = // This is a function
// Other code ...
let sample = some_calculation // This is a variable
sample // Return the variable
While F# allows you to reuse names like that, and the name inside the function will "shadow" the name outside the function, it's generally a bad idea for the reused name to have a totally different type than the original name. In other words, this can be a good idea:
let f (a : float option) =
let a = match a with
| None -> 0.0
| Some value -> value
// Now proceed, knowing that `a` has a real value even if had been None before
Or, because the above is exactly what F# gives you defaultArg for:
let f (a : float option) =
let a = defaultArg a 0.0
// This does exactly the same thing as the previous snippet
Here, we are making the name a inside our function refer to a different type than the parameter named a: the parameter was a float option, and the a inside our function is a float. But they're sort of the "same" type -- that is, there's very little mental difference between "The caller may have specified a floating-point value or they may not" and "Now I definitely have a floating-point value". But there's a very large mental gap between "The name sample is a function that takes three parameters" and "The name sample is a sequence of floats". I strongly recommend using a name like result for the value you're going to return from your function, rather than re-using the function name.
Also, this seems unnecessarily verbose:
let result =
match repl with
| true ->
DiscreteUniform.Samples(0, n-1)
|> Seq.take size
|> Seq.map (fun index -> Seq.item index data)
| false ->
generateIndex (seq [])
|> Seq.map (fun index -> Seq.item index data)
result
Anytime I find myself writing "let result = (something) ; result" at the end of my function, I usually just want to replace that whole code block with just the (something). I.e., the above snippet could just become:
match repl with
| true ->
DiscreteUniform.Samples(0, n-1)
|> Seq.take size
|> Seq.map (fun index -> Seq.item index data)
| false ->
generateIndex (seq [])
|> Seq.map (fun index -> Seq.item index data)
Which in turn can be replaced with an if...then...else expression:
if repl then
DiscreteUniform.Samples(0, n-1)
|> Seq.take size
|> Seq.map (fun index -> Seq.item index data)
else
generateIndex (seq [])
|> Seq.map (fun index -> Seq.item index data)
And that's the last expression in your code. In other words, I would probably rewrite your function as follows (changing ONLY the style, and making no changes to the logic):
open MathNet.Numerics.Distributions
open MathNet.Numerics.LinearAlgebra
let sample (data : seq<float>) (size : int) (repl : bool) =
let n = data |> Seq.length
// without replacement
let rec generateIndex idx =
let m = size - Seq.length(idx)
if m > 0 then
let newIdx = DiscreteUniform.Samples(0, n-1) |> Seq.take m
let idx = (Seq.append idx newIdx) |> Seq.distinct
generateIndex idx
else
idx
if repl then
DiscreteUniform.Samples(0, n-1)
|> Seq.take size
|> Seq.map (fun index -> Seq.item index data)
else
generateIndex (seq [])
|> Seq.map (fun index -> Seq.item index data)
If I can figure out why your sequences have the wrong length, I'll update this answer with that information as well.
UPDATE: Okay, I think I see what's happening in your generateIndex function that's giving you unexpected results. There are two things tripping you up: one is sequence laziness, and the other is randomness.
I copied your generateIndex function into VS Code and added some printfn statements to look at what's going on. First, the code I ran, and then the results:
let rec generateIndex n size idx =
let m = size - Seq.length(idx)
printfn "m = %d" m
match m > 0 with
| true ->
let newIdx = DiscreteUniform.Samples(0, n-1) |> Seq.take m
printfn "Generating newIdx as %A" (List.ofSeq newIdx)
let idx = (Seq.append idx newIdx) |> Seq.distinct
printfn "Now idx is %A" (List.ofSeq idx)
generateIndex n size idx
| false ->
printfn "Done, returning %A" (List.ofSeq idx)
idx
All those List.ofSeq idx calls are so that F# Interactive would print more than four items of the seq when I print it out (by default, if you try to print a seq with %A, it will only print out four values and then print an ellipsis if there are more values available in the seq). Also, I turned n and size into parameters (that I don't change between calls) so that I could test it easily. I then called it as generateIndex 100 5 (seq []) and got the following result:
m = 5
Generating newIdx as [74; 76; 97; 78; 31]
Now idx is [68; 28; 65; 58; 82]
m = 0
Done, returning [37; 58; 24; 48; 49]
val it : seq<int> = seq [12; 69; 97; 38; ...]
See how the numbers keep changing? That was my first clue that something was up. See, seqs are lazy. They don't evaluate their contents until they have to. You shouldn't think of a seq as a list of numbers. Instead, think of it as a generator that will, when asked for numbers, produce them according to some rule. In your case, the rule is "Choose random integers between 0 and n-1, then take m of those numbers". And the other thing about seqs is that they do not cache their contents (although there's a Seq.cache function available that will cache their contents). Therefore, if you have a seq based on a random number generator, its results will be different each time, as you can see in my output. When I printed out newIdx, it printed out as [74; 76; 97; 78; 31], but when I appended it to an empty seq, the result printed out as [68; 28; 65; 58; 82].
Why this difference? Because Seq.append does not force evaluation. It simply creates a new seq whose rule is "take all items from the first seq, then when that one exhausts, take all items from the second seq. And when that one exhausts, end." And Seq.distinct does not force evaluation either; it simply creates a new seq whose rule is "take the items from the seq handed to you, and start handing them out when asked. But memorize them as you go, and if you've handed one of them out before, don't hand it out again." So what you are passing around between your calls to generateIdx is an object that, when evaluated, will pick a set of random numbers between 0 and n-1 (in my simple case, between 0 and 100) and then reduce that set down to a distinct set of numbers.
Now, here's the thing. Every time you evaluate that seq, it will start from the beginning: first calling DiscreteUniform.Samples(0, n-1) to generate an infinite stream of random numbers, then selecting m numbers from that stream, then throwing out any duplicates. (I'm ignoring the Seq.append for now, because it would create unnecessary mental complexity and it isn't really part of the bug anyway). Now, at the start of each go-round of your function, you check the length of the sequence, which does cause it to be evaluated. That means that it selects (in the case of my sample code) 5 random numbers between 0 and 99, then makes sure that they're all distinct. If they are all distinct, then m = 0 and the function will exit, returning... not the list of numbers, but the seq object. And when that seq object is evaluated, it will start over from the beginning, choosing a different set of 5 random numbers and then throwing out any duplicates. Therefore, there's still a chance that at least one of that set of 5 numbers will end up being a duplicate, because the sequence whose length was tested (which we know contained no duplicates, otherwise m would have been greater than 0) was not the sequence that was returned. The sequence that was returned has a 1.0 * 0.99 * 0.98 * 0.97 * 0.96 chance of not containing any duplicates, which comes to about 0.9035. So there's a just-under-10% chance that even though you checked Seq.length and it was 5, the length of the returned seq ends up being 4 after all -- because it was choosing a different set of random numbers than the one you checked.
To prove this, I ran the function again, this time only picking 4 numbers so that the result would be completely shown at the F# Interactive prompt. And my run of generateIndex 100 4 (seq []) produced the following output:
m = 4
Generating newIdx as [36; 63; 97; 31]
Now idx is [39; 93; 53; 94]
m = 0
Done, returning [47; 94; 34]
val it : seq<int> = seq [48; 24; 14; 68]
Notice how when I printed "Done, returning (value of idx)", it had only 3 values? Even though it eventually returned 4 values (because it picked a different selection of random numbers for the actual result, and that selection had no duplicates), that demonstrated the problem.
By the way, there's one other problem with your function, which is that it's far slower than it needs to be. The function Seq.item, in some circumstances, has to run through the sequence from the beginning in order to pick the nth item of the sequence. It would be far better to store your data in an array at the start of your function (let arrData = data |> Array.ofSeq), then replace
|> Seq.map (fun index -> Seq.item index data)
with
|> Seq.map (fun index -> arrData.[index])
Array lookups are done in constant time, so that takes your sample function down from O(N^2) to O(N).
TL;DR: Use Seq.distinct before you take m values from it and the bug will go away. You can just replace your entire generateIdx function with a simple DiscreteUniform.Samples(0, n-1) |> Seq.distinct |> Seq.take size. (And use an array for your data lookups so that your function will run faster). In other words, here's the final almost-final version of how I would rewrite your code:
let sample (data : seq<float>) (size : int) (repl : bool) =
let arrData = data |> Array.ofSeq
let n = arrData |> Array.length
if repl then
DiscreteUniform.Samples(0, n-1)
|> Seq.take size
|> Seq.map (fun index -> arrData.[index])
else
DiscreteUniform.Samples(0, n-1)
|> Seq.distinct
|> Seq.take size
|> Seq.map (fun index -> arrData.[index])
That's it! Simple, easy to understand, and (as far as I can tell) bug-free.
Edit: ... but not completely DRY, because there's still a bit of repeated code in that "final" version. (Credit to CaringDev for pointing it out in the comments below). The Seq.take size |> Seq.map is repeated in both branches of the if expression, so there's a way to simplify that expression. We could do this:
let randomIndices =
if repl then
DiscreteUniform.Samples(0, n-1)
else
DiscreteUniform.Samples(0, n-1) |> Seq.distinct
randomIndices
|> Seq.take size
|> Seq.map (fun index -> arrData.[index])
So here's a truly-final version of my suggestion:
let sample (data : seq<float>) (size : int) (repl : bool) =
let arrData = data |> Array.ofSeq
let n = arrData |> Array.length
let randomIndices =
if repl then
DiscreteUniform.Samples(0, n-1)
else
DiscreteUniform.Samples(0, n-1) |> Seq.distinct
randomIndices
|> Seq.take size
|> Seq.map (fun index -> arrData.[index])

Sampling in F# : is Set adequate?

I have an array of items, from which I'd like to sample.
I was under the impression that a Set would the a good structure to sample from, in a fold where I'd give back the original or a modified set with the retrieved element missing depending if I want replacement of not.
However, there seems to no method to retrieve an element directly from a Set.
Is there something I am missing ? or should I use Set of indices, along with a surrogate function that starts at some random position < Set.count and goes up until it finds a member ?
That is, something along this line
module Seq =
let modulo (n:int) start =
let rec next i = seq { yield (i + 1)%n ; yield! next (i+1)}
next start
module Array =
let Sample (withReplacement:bool) seed (entries:'T array) =
let prng, indexes = new Random(seed), Set(Seq.init (entries |> Array.length) id)
Seq.unfold (fun set -> let N = set |> Set.count
let next = Seq.modulo N (prng.Next(N)) |> Seq.truncate N |> Seq.tryFind(fun i -> set |> Set.exists ((=) i))
if next.IsSome then
Some(entries.[next.Value], if withReplacement then set else Set.remove next.Value set)
else
None)
Edit : Tracking positively what I gave, instead of tracking what I still can give would make it simpler and more efficient.
For sampling without replacement, you could just permute the source seq and take however many elements you want to sample
let sampleWithoutReplacement n s =
let a = Array.ofSeq s
seq { for i = a.Length downto 1 do
let j = rnd.Next i
yield a.[j]
a.[j] <- a.[i - 1] }
|> Seq.take n
To sample with replacement, just pick a random element n times from the source seq
let sampleWithReplacement n s =
let a = Array.ofSeq s
Seq.init n (fun _ -> a.[rnd.Next(a.Length)])
These may not be the most efficient methods with huge data sets however
Continuing our comments...if you want to randomly sample a sequence without slurping the entire thing into memory you could generate a set of random indices the size of your desired sample (not too different from what you already have):
let rand count max =
System.Random()
|> Seq.unfold (fun r -> Some(r.Next(max), r))
|> Seq.distinct
|> Seq.take count
|> set
let takeSample sampleSize inputSize input =
let indices = rand sampleSize inputSize
input
|> Seq.mapi (fun idx x ->
if Set.contains idx indices then Some x else None)
|> Seq.choose id
let inputSize = 100000
let input = Seq.init inputSize id
let sample = takeSample 50 inputSize input
printfn "%A" (Seq.toList sample)

What's the style for immutable set and map in F#

I have just solved problem23 in Project Euler, in which I need a set to store all abundant numbers. F# has a immutable set, I can use Set.empty.Add(i) to create a new set containing number i. But I don't know how to use immutable set to do more complicated things.
For example, in the following code, I need to see if a number 'x' could be written as the sum of two numbers in a set. I resort to a sorted array and array's binary search algorithm to get the job done.
Please also comment on my style of the following program. Thanks!
let problem23 =
let factorSum x =
let mutable sum = 0
for i=1 to x/2 do
if x%i=0 then
sum <- sum + i
sum
let isAbundant x = x < (factorSum x)
let abuns = {1..28123} |> Seq.filter isAbundant |> Seq.toArray
let inAbuns x = Array.BinarySearch(abuns, x) >= 0
let sumable x =
abuns |> Seq.exists (fun a -> inAbuns (x-a))
{1..28123} |> Seq.filter (fun x -> not (sumable x)) |> Seq.sum
the updated version:
let problem23b =
let factorSum x =
{1..x/2} |> Seq.filter (fun i->x%i=0) |> Seq.sum
let isAbundant x = x < (factorSum x)
let abuns = Set( {1..28123} |> Seq.filter isAbundant )
let inAbuns x = Set.contains x abuns
let sumable x =
abuns |> Seq.exists (fun a -> inAbuns (x-a))
{1..28123} |> Seq.filter (fun x -> not (sumable x)) |> Seq.sum
This version runs in about 27 seconds, while the first 23 seconds(I've run several times). So an immutable red-black tree actually does not have much speed down compared to a sorted array with binary search. The total number of elements in the set/array is 6965.
Your style looks fine to me. The different steps in the algorithm are clear, which is the most important part of making something work. This is also the tactic I use for solving Project Euler problems. First make it work, and then make it fast.
As already remarked, replacing Array.BinarySearch by Set.contains makes the code even more readable. I find that in almost all PE solutions I've written, I only use arrays for lookups. I've found that using sequences and lists as data structures is more natural within F#. Once you get used to them, that is.
I don't think using mutability inside a function is necessarily bad. I've optimized problem 155 from almost 3 minutes down to 7 seconds with some aggressive mutability optimizations. In general though, I'd save that as an optimization step and start out writing it using folds/filters etc. In the example case of problem 155, I did start out using immutable function composition, because it made testing and most importantly, understanding, my approach easy.
Picking the wrong algorithm is much more detrimental to a solution than using a somewhat slower immutable approach first. A good algorithm is still fast even if it's slower than the mutable version (couch hello captain obvious! cough).
Edit: let's look at your version
Your problem23b() took 31 seconds on my PC.
Optimization 1: use new algorithm.
//useful optimization: if m divides n, (n/m) divides n also
//you now only have to check m up to sqrt(n)
let factorSum2 n =
let rec aux acc m =
match m with
| m when m*m = n -> acc + m
| m when m*m > n -> acc
| m -> aux (acc + (if n%m=0 then m + n/m else 0)) (m+1)
aux 1 2
This is still very much in functional style, but using this updated factorSum in your code, the execution time went from 31 seconds to 8 seconds.
Everything's still in immutable style, but let's see what happens when an array lookup is used instead of a set:
Optimization 2: use an array for lookup:
let absums() =
//create abundant numbers as an array for (very) fast lookup
let abnums = [|1..28128|] |> Array.filter (fun n -> factorSum2 n > n)
//create a second lookup:
//a boolean array where arr.[x] = true means x is a sum of two abundant numbers
let arr = Array.zeroCreate 28124
for x in abnums do
for y in abnums do
if x+y<=28123 then arr.[x+y] <- true
arr
let euler023() =
absums() //the array lookup
|> Seq.mapi (fun i isAbsum -> if isAbsum then 0 else i) //mapi: i is the position in the sequence
|> Seq.sum
//I always write a test once I've solved a problem.
//In this way, I can easily see if changes to the code breaks stuff.
let test() = euler023() = 4179871
Execution time: 0.22 seconds (!).
This is what I like so much about F#, it still allows you to use mutable constructs to tinker under the hood of your algorithm. But I still only do this after I've made something more elegant work first.
You can easily create a Set from a given sequence of values.
let abuns = Set (seq {1..28123} |> Seq.filter isAbundant)
inAbuns would therefore be rewritten to
let inAbuns x = abuns |> Set.mem x
Seq.exists would be changed to Set.exists
But the array implementation is fine too ...
Note that there is no need to use mutable values in factorSum, apart from the fact that it's incorrect since you compute the number of divisors instead of their sum:
let factorSum x = seq { 1..x/2 } |> Seq.filter (fun i -> x % i = 0) |> Seq.sum
Here is a simple functional solution that is shorter than your original and over 100× faster:
let problem23 =
let rec isAbundant i t x =
if i > x/2 then x < t else
if x % i = 0 then isAbundant (i+1) (t+i) x else
isAbundant (i+1) t x
let xs = Array.Parallel.init 28124 (isAbundant 1 0)
let ys = Array.mapi (fun i b -> if b then Some i else None) xs |> Array.choose id
let f x a = x-a < 0 || not xs.[x-a]
Array.init 28124 (fun x -> if Array.forall (f x) ys then x else 0)
|> Seq.sum
The first trick is to record which numbers are abundant in an array indexed by the number itself rather than using a search structure. The second trick is to notice that all the time is spent generating that array and, therefore, to do it in parallel.

Get a random subset from a set in F#

I am trying to think of an elegant way of getting a random subset from a set in F#
Any thoughts on this?
Perhaps this would work: say we have a set of 2x elements and we need to pick a subset of y elements. Then if we could generate an x sized bit random number that contains exactly y 2n powers we effectively have a random mask with y holes in it. We could keep generating new random numbers until we get the first one satisfying this constraint but is there a better way?
If you don't want to convert to an array you could do something like this. This is O(n*m) where m is the size of the set.
open System
let rnd = Random(0);
let set = Array.init 10 (fun i -> i) |> Set.of_array
let randomSubSet n set =
seq {
let i = set |> Set.to_seq |> Seq.nth (rnd.Next(set.Count))
yield i
yield! set |> Set.remove i
}
|> Seq.take n
|> Set.of_seq
let result = set |> randomSubSet 3
for x in result do
printfn "%A" x
Agree with #JohannesRossel. There's an F# shuffle-an-array algorithm here you can modify suitably. Convert the Set into an array, and then loop until you've selected enough random elements for the new subset.
Not having a really good grasp of F# and what might be considered elegant there, you could just do a shuffle on the list of elements and select the first y. A Fisher-Yates shuffle even helps you in this respect as you also only need to shuffle y elements.
rnd must be out of subset function.
let rnd = new Random()
let rec subset xs =
let removeAt n xs = ( Seq.nth (n-1) xs, Seq.append (Seq.take (n-1) xs) (Seq.skip n xs) )
match xs with
| [] -> []
| _ -> let (rem, left) = removeAt (rnd.Next( List.length xs ) + 1) xs
let next = subset (List.of_seq left)
if rnd.Next(2) = 0 then rem :: next else next
Do you mean a random subset of any size?
For the case of a random subset of a specific size, there's a very elegant answer here:
Select N random elements from a List<T> in C#
Here it is in pseudocode:
RandomKSubset(list, k):
n = len(list)
needed = k
result = {}
for i = 0 to n:
if rand() < needed / (n-i)
push(list[i], result)
needed--
return result
Using Seq.fold to construct using lazy evaluation random sub-set:
let rnd = new Random()
let subset2 xs = let insertAt n xs x = Seq.concat [Seq.take n xs; seq [x]; Seq.skip n xs]
let randomInsert xs = insertAt (rnd.Next( (Seq.length xs) + 1 )) xs
xs |> Seq.fold randomInsert Seq.empty |> Seq.take (rnd.Next( Seq.length xs ) + 1)

Resources