Unsupervised or Supervised Machine Learning - machine-learning

I dont quite get what kind of Machine Learning Problem this is.
I do have Data consisting of time and a specific count.
_time
count
7:15
190
7:20
240
and so on.
With this Data I would like to create a model and "predict" the count value of specific times. The following Data looks like this:
_time
count
7:30
7:35
For this Data i use the trained model and get a valid count out of it. Now I am wondering if it is supervised (because in the model we know the true counts and apply it to another time with unknown count) or if it is unsupervised.

I will quote an explanation on a blog since I think it is well done and answer your question later.
"There are two main types of learning: supervised and unsupervised. The main difference between the two types is that supervised learning is truth-based. In other words, we have prior knowledge of what the output values of our samples should be. Therefore, the goal of supervised learning is to learn a function that, given a sample of data and the desired results, best approximates the relationship between input and output observable in the data. In contrast, unsupervised learning has no labeled outcomes. Its goal is therefore to infer the natural structure present in a set of data points."
So your problem is supervised, because you have an element of answer, which is a count that you already know, on which you will base yourself to deduct other counts

In the dataset, _time is a feature, and count is the target (also know as "label"). When there is labelled data, it is a supervised machine learning problem.
You can read this article for more details.

Related

How do I create a feature vector if I don’t have all the data?

So say for each of my ‘things’ to classify I have:
{house, flat, bungalow, electricityHeated, gasHeated, ... }
Which would be made into a feature vector:
{1,0,0,1,0,...} which would mean a house that is heated by electricity.
For my training data I would have all this data- but for the actual thing I want to classify I might only have what kind of house it is, and a couple other things- not all the data ie.
{1,0,0,?,?,...}
So how would I represent this?
I would want to find the probability that a new item would be gasHeated.
I would be using a SVM linear classifier- I don’t have any core to show because this is purely theoretical at the moment. Any help would be appreciated :)
When I read this question, it seems that you may have confused with feature and label.
You said that you want to predict whether a new item is "gasHeated", then "gasHeated" should be a label rather than a feature.
btw, one of the most-common ways to deal with missing value is to set it as "zero" (or some unused value, say -1). But normally, you should have missing value in both training data and testing data to make this trick be effective. If this only happened in your testing data but not in your training data, it means that your training data and testing data are not from the same distribution, which basically violated the basic assumption of machine learning.
Let's say you have a trained model and a testing sample {?,0,0,0}. Then you can create two new testing samples, {1,0,0,0}, {0,0,0,0}, and you will have two predictions.
I personally don't think SVM is a good approach if you have missing values in your testing dataset. Just like I have mentioned above, although you can get two new predictions, but what if each one has different predictions? It is difficult to assign a probability to results of SVM in my opinion unless you use logistic regression or Naive Bayes. I would prefer Random Forest in this situation.

Is it possible to cluster data with grouped rows of data in unsupervised learning?

I am working to setup data for an unsupervised learning algorithm. The goal of the project is to group (cluster) different customers together based on their behavior on the website. Obviously, some sort of clustering algorithm is best for discovering patterns in the data we can't see as humans.
However, the database contains multiple rows for each customer (in chronological order) for each action the customer took on the website for that visit. For example customer with ID# 123 clicked on page 1 at time X and that would be a row in the database, and then the same customer clicked another page at time Y. That would make another row in the database.
My question is what algorithm or approach would you use for clustering in this given scenario? K-means is really popular for this type of problem, but I don't know if it's possible to use in this situation because of the grouping. Is it somehow possible to do cluster analysis around one specific ID that includes multiple rows?
Any help/direction of unsupervised learning I should take is appreciated.
In short,
Learn a fixed-length embedding (representation) of each event;
Learn a way to combine a sequence of such embeddings into a single representation for each event, then use your favorite unsupervised methods.
For (1), you can do it either manually or use an encoder/decoder;
For (2), there is a range of things you can do, ranging from just simply averaging embeddings from each event, to training an encoder-decoder on reconstructing the original sequence of events and take the intermediate representation (that the decoder uses to reconstruct the original sequence).
A good read on this topic (though a bit old; you now also have the option of Transformer Network):
Representations for Language: From Word Embeddings to Sentence Meanings

Machine learning with my car dataset

I’m very new to machine learning.
I have a dataset with data given me by a f1 race. User is playing this game and is giving me this dataset.
With machine learning, I have to work with this data and when a user (I know they are 10) plays a game I have to recognize who’s playing.
The data consists of datagram packet occurred in 1/10 second freq, the packets contains the following Time, laptime, lapdistance, totaldistance, speed, car position, traction control, last lap time, fuel, gear,..
I’ve thought to use a kmeans used in a supervised way.
Which algorithm could be better?
The task must be a multiclass classification. The very first step in any machine learning activity is to define a score metric (https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/). That allows you to compare models between themselves and decide which is better. Then build a base model with random forest or/and logistic regression as suggested in another answer - they perform well out-of-the-box. Then try to play with features and understand which of them are more informative. And don't forget about a visualizations - they give many hints for data wrangling, etc.
this is somewhat a broad question, so I'll try my best
kmeans is unsupervised algorithm meaning it will find the classes itself and it best used when you know there are multiple classes but you don't know what exactly they are... using it with labeled data just means you will compute the distance of new vector v to each vector in the dataset and pick the one (or ones using majority vote) which give the min distance , this is not considered as machine learning
in this case when you do have the labels, supervised approach will yield much better results
I suggest try random forest and logistic regression at first, those are the most basic and common algorithms and they give pretty good results
if you haven't achieve the desired accuracy you can use deep learning and build a neural network with input layer as big as your packet's values and output layer of the number of classes, in between you can use one or multiple hidden layers with various nodes, but this is advanced approach and you better pick up some experience in machine learning field before pursue it
Note: the data is a time series, meaning that every driver has it's own behaviour of driving a car, so data should be considered as bulks of points, with this you can apply pattern matching technics, also there are a several neural networks build exactly for this data (like RNN) but this is far far advanced and much more difficult to implement

How to classify text with Knime

I'm trying to classify some data using knime with knime-labs deep learning plugin.
I have about 16.000 products in my DB, but I have about 700 of then that I know its category.
I'm trying to classify as much as possible using some DM (data mining) technique. I've downloaded some plugins to knime, now I have some deep learning tools as some text tools.
Here is my workflow, I'll use it to explain what I'm doing:
I'm transforming the product name into vector, than applying into it.
After I train a DL4J learner with DeepMLP. (I'm not really understand it all, it was the one that I thought I got the best results). Than I try to apply the model in the same data set.
I thought I would get the result with the predicted classes. But I'm getting a column with output_activations that looks that gets a pair of doubles. when sorting this column I get some related date close to each other. But I was expecting to get the classes.
Here is a print of the result table, here you can see the output with the input.
In columns selection it's getting just the converted_document and selected des_categoria as Label Column (learning node config). And in Predictor node I checked the "Append SoftMax Predicted Label?"
The nom_produto is the text column that I'm trying to use to predict the des_categoria column that it the product category.
I'm really newbie about DM and DL. If you could get me some help to solve what I'm trying to do would be awesome. Also be free to suggest some learning material about what attempting to achieve
PS: I also tried to apply it into the unclassified data (17,000 products), but I got the same result.
I won't answer with a workflow on this one because it is not going to be a simple one. However, be sure to find the text mining example on the KNIME server, i.e. the one that makes use of the bag of words approach.
The task
Product mapping to categories should be a straight-forward data mining task because the information that explains the target variable is available in a quasi-exhaustive manner. Depending on the number of categories to train though, there is a risk that you might need more than 700 instances to learn from.
Some resources
Here are some resources, only the first one being truly specialised in text mining:
Introduction on Information Retrieval, in particular chapter 13;
Data Science for Business is an excellent introduction to data mining, including text mining (chapter 10), also do not forget the chapter about similarity (chapter 6);
Machine Learning with R has the advantage of being accessible enough (chapter 4 provides an example of text classification with R code).
Preprocessing
First, you will have to preprocess your product labels a bit. Use KNIME's text analytics preprocessing nodes for that purpose, that is after you've transformed the product labels with Strings to Document:
Case Convert, Punctuation Erasure and Snowball Stemmer;
you probably won't need Stop Word Filter, however, there may be quasi-stop words such as "product", which you may need to remove manually with Dictionary Filter;
Be careful not to use any of the following without testing testing their impact first: N Chars Filter (g may be a useful word), Number Filter (numbers may indicate quantities, which may be useful for classification).
Should you encounter any trouble with the relevant nodes (e.g. Punctuation Erasure can be tricky amazingly thanks to the tokenizer), you can always apply String Manipulation with regex before converting the Strings to Document.
Keep it short and simple: the lookup table
You could build a lookup table based on the 700 training instances. The book Data mining techniques as well as resource (2) present this approach in some detail. If any model performs any worse than the lookup table, you should abandon the model.
Nearest neighbors
Neural networks are probably overkill for this task.
Start with a K Nearest Neighbor node (applying a string distance such as Cosine, Levensthein or Jaro-Winkler). This approach requires the least amount of data wrangling. At the very least, it will provide an excellent baseline model, so it is most definitely worth a shot.
You'll need to tune the parameter k and to experiment with the distance types. The Parameter Optimization Loop pair will help you with optimizing k, you can include a Cross-Validation meta node inside of the said loop to obtain an estimate of the expected performance given k instead of only one point estimate per value of k. Use Cohen's Kappa as an optimization criterion, as proposed by the resource number (3) and available via the Scorer node.
After the parameter tuning, you'll have to evaluate the relevance of your model using yet another Cross-Validation meta node, then follow up with a Loop pair including Scorer to calculate the descriptives on performance metric(s) per iteration, finally use Statistics. Kappa is a convenient metric for this task because the target variable consists of many product categories.
Don't forget to test its performance against the lookup table.
What next ?
Should lookup table or k-nn work well for you, then there's nothing else to add.
Should any of those approaches fail, you might want to analyse the precise cases on which it fails. In addition, training set size may be too low, so you could manually classify another few hundred or thousand instances.
If after increasing the training set size, you are still dealing with a bad model, you can try the bag of words approach together with a Naive Bayes classifier (see chapter 13 of the Information Retrieval reference). There is no room here to elaborate on the bag of words approach and Naive Bayes but you'll find the resources here above useful for that purpose.
One last note. Personally, I find KNIME's Naive Bayes node to perform poorly, probably because it does not implement Laplace smoothening. However, KNIME's R Learner and R Predictor nodes will allow you to use R's e1071 package, as demonstrated by resource (3).

Clustering or other mechanisms for implementing generic spam detection

In normal case I had tried out naive bayes and linear SVM earlier to classify data related to certain specific type of comments related to some page where I had access to training data manually labelled and classified as spam or ham.
Now I am being told to check if there are any ways to classify comments as spam where we don't have a training data. Something like getting two clusters for data which will be marked as spam or ham given any data.
I need to know certain ways to approach this problem and what would be a good way to implement this.
I am still learning and experimenting . Any help will be appreciated
Are the new comments very different from the old comments in terms of vocabulary? Because words is almost everything the classifiers for this task look at.
You always can try using your old training data and apply the classifier to the new domain. You would have to label a few examples from your new domain in order to measure performance (or better, let others do the labeling in order to get more reliable results).
If this doesn't work well, you could try domain adaptation or look for some datasets more similar to your new domain, using Google or looking at this spam/ham corpora.
Finally, there may be some regularity or pattern in your new setting, e.g. downvotes for a comment, which may indicate spam/ham. In such cases, you could compile training data yourself. This would them be called distant supervision (you can search for papers using this keyword).
The best I could get to was this research work which mentions about active learning. So what I came up with is that I first performed Kmeans clustering and got the central clusters (assuming 5 clusters I took 3 clusters descending ordered by length) and took 1000 msgs from each. Then I would assign it to be labelled by the user. The next process would be training using logistic regression on the labelled data and getting the probabilities of unlabelled data and then if I have probability close to 0.5 or in range of 0.4 to 0.6 which means it is uncertain I would assign it to be labelled and then the process would continue.

Resources