Calculating mean of normal distribution - mean

How can I calculate the mean of normal distribution knowing the sd, a percentile and its value ?
I've got a question where the :
sd = 100
the 18 percentile's value is 1200
I standardized the distribution converting it to the Z score and using fi function and Z table.
then tried to calculate by P(Z > ((1200-mean)/100)) = 0.18
I got that mean = 1142.858 but it is a wrong answer.
what did I do wrong ?

There are two different solutions of this question which are depends on the how the percentile is selected.
If we assume data are arranged in ascending order and pick the 1200 as initial 18 percentile value, the appropriate probabilty function would be P(z<((1200-mean)/100)) = 0.18 and then, if we apply the InvNorm function (Inverse Normal Probability Distribution Function), the corresponding z-score for a probability will be -0.915 which will make the equation as follows;
P(z<-0.915)=0.18 -> -0.915 = (1200-mean)/100 -> the mean will be 1291.5
If we assume data are arranged in ascending order and pick the 1200 as last 18 percentile value,the appropriate probabilty function would be P(z>((1200-mean)/100)) = 0.18 and then, if we apply the InvNorm function (Inverse Normal Probability Distribution Function), the corresponding z-score for a probability will be 0.915 which will make the equation as follows;
P(z> 0.915)=0.18 -> 0.915 = (1200-mean)/100 -> the mean will be 1108.5

Related

Dealing with NaN (missing) values for Logistic Regression- Best practices?

I am working with a data-set of patient information and trying to calculate the Propensity Score from the data using MATLAB. After removing features with many missing values, I am still left with several missing (NaN) values.
I get errors due to these missing values, as the values of my cost-function and gradient vector become NaN, when I try to perform logistic regression using the following Matlab code (from Andrew Ng's Coursera Machine Learning class) :
[m, n] = size(X);
X = [ones(m, 1) X];
initial_theta = ones(n+1, 1);
[cost, grad] = costFunction(initial_theta, X, y);
options = optimset('GradObj', 'on', 'MaxIter', 400);
[theta, cost] = ...
fminunc(#(t)(costFunction(t, X, y)), initial_theta, options);
Note: sigmoid and costfunction are working functions I created for overall ease of use.
The calculations can be performed smoothly if I replace all NaN values with 1 or 0. However I am not sure if that is the best way to deal with this issue, and I was also wondering what replacement value I should pick (in general) to get the best results for performing logistic regression with missing data. Are there any benefits/drawbacks to using a particular number (0 or 1 or something else) for replacing the said missing values in my data?
Note: I have also normalized all feature values to be in the range of 0-1.
Any insight on this issue will be highly appreciated. Thank you
As pointed out earlier, this is a generic problem people deal with regardless of the programming platform. It is called "missing data imputation".
Enforcing all missing values to a particular number certainly has drawbacks. Depending on the distribution of your data it can be drastic, for example, setting all missing values to 1 in a binary sparse data having more zeroes than ones.
Fortunately, MATLAB has a function called knnimpute that estimates a missing data point by its closest neighbor.
From my experience, I often found knnimpute useful. However, it may fall short when there are too many missing sites as in your data; the neighbors of a missing site may be incomplete as well, thereby leading to inaccurate estimation. Below, I figured out a walk-around solution to that; it begins with imputing the least incomplete columns, (optionally) imposing a safe predefined distance for the neighbors. I hope this helps.
function data = dnnimpute(data,distCutoff,option,distMetric)
% data = dnnimpute(data,distCutoff,option,distMetric)
%
% Distance-based nearest neighbor imputation that impose a distance
% cutoff to determine nearest neighbors, i.e., avoids those samples
% that are more distant than the distCutoff argument.
%
% Imputes missing data coded by "NaN" starting from the covarites
% (columns) with the least number of missing data. Then it continues by
% including more (complete) covariates in the calculation of pair-wise
% distances.
%
% option,
% 'median' - Median of the nearest neighboring values
% 'weighted' - Weighted average of the nearest neighboring values
% 'default' - Unweighted average of the nearest neighboring values
%
% distMetric,
% 'euclidean' - Euclidean distance (default)
% 'seuclidean' - Standardized Euclidean distance. Each coordinate
% difference between rows in X is scaled by dividing
% by the corresponding element of the standard
% deviation S=NANSTD(X). To specify another value for
% S, use D=pdist(X,'seuclidean',S).
% 'cityblock' - City Block distance
% 'minkowski' - Minkowski distance. The default exponent is 2. To
% specify a different exponent, use
% D = pdist(X,'minkowski',P), where the exponent P is
% a scalar positive value.
% 'chebychev' - Chebychev distance (maximum coordinate difference)
% 'mahalanobis' - Mahalanobis distance, using the sample covariance
% of X as computed by NANCOV. To compute the distance
% with a different covariance, use
% D = pdist(X,'mahalanobis',C), where the matrix C
% is symmetric and positive definite.
% 'cosine' - One minus the cosine of the included angle
% between observations (treated as vectors)
% 'correlation' - One minus the sample linear correlation between
% observations (treated as sequences of values).
% 'spearman' - One minus the sample Spearman's rank correlation
% between observations (treated as sequences of values).
% 'hamming' - Hamming distance, percentage of coordinates
% that differ
% 'jaccard' - One minus the Jaccard coefficient, the
% percentage of nonzero coordinates that differ
% function - A distance function specified using #, for
% example #DISTFUN.
%
if nargin < 3
option = 'mean';
end
if nargin < 4
distMetric = 'euclidean';
end
nanVals = isnan(data);
nanValsPerCov = sum(nanVals,1);
noNansCov = nanValsPerCov == 0;
if isempty(find(noNansCov, 1))
[~,leastNans] = min(nanValsPerCov);
noNansCov(leastNans) = true;
first = data(nanVals(:,noNansCov),:);
nanRows = find(nanVals(:,noNansCov)==true); i = 1;
for row = first'
data(nanRows(i),noNansCov) = mean(row(~isnan(row)));
i = i+1;
end
end
nSamples = size(data,1);
if nargin < 2
dataNoNans = data(:,noNansCov);
distances = pdist(dataNoNans);
distCutoff = min(distances);
end
[stdCovMissDat,idxCovMissDat] = sort(nanValsPerCov,'ascend');
imputeCols = idxCovMissDat(stdCovMissDat>0);
% Impute starting from the cols (covariates) with the least number of
% missing data.
for c = reshape(imputeCols,1,length(imputeCols))
imputeRows = 1:nSamples;
imputeRows = imputeRows(nanVals(:,c));
for r = reshape(imputeRows,1,length(imputeRows))
% Calculate distances
distR = inf(nSamples,1);
%
noNansCov_r = find(isnan(data(r,:))==0);
noNansCov_r = noNansCov_r(sum(isnan(data(nanVals(:,c)'==false,~isnan(data(r,:)))),1)==0);
%
for i = find(nanVals(:,c)'==false)
distR(i) = pdist([data(r,noNansCov_r); data(i,noNansCov_r)],distMetric);
end
tmp = min(distR(distR>0));
% Impute the missing data at sample r of covariate c
switch option
case 'weighted'
data(r,c) = (1./distR(distR<=max(distCutoff,tmp)))' * data(distR<=max(distCutoff,tmp),c) / sum(1./distR(distR<=max(distCutoff,tmp)));
case 'median'
data(r,c) = median(data(distR<=max(distCutoff,tmp),c),1);
case 'mean'
data(r,c) = mean(data(distR<=max(distCutoff,tmp),c),1);
end
% The missing data in sample r is imputed. Update the sample
% indices of c which are imputed.
nanVals(r,c) = false;
end
fprintf('%u/%u of the covariates are imputed.\n',find(c==imputeCols),length(imputeCols));
end
To deal with missing data you can use one of the following three options:
If there are not many instances with missing values, you can just delete the ones with missing values.
If you have many features and it is affordable to lose some information, delete the entire feature with missing values.
The best method is to fill some value (mean, median) in place of missing value. You can calculate the mean of the rest of the training examples for that feature and fill all the missing values with the mean. This works out pretty well as the mean value stays in the distribution of your data.
Note: When you replace the missing values with the mean, calculate the mean only using training set. Also, store that value and use it to change the missing values in the test set also.
If you use 0 or 1 to replace all the missing values then the data may get skewed so it is better to replace the missing values by an average of all the other values.

Difference between the weight parameter in xgb.DMatrix and scale_pos_weight in hyper params list?

I am having a little difficulty understanding what's the difference between the weight function in xgb.DMatrix and the sum_pos_weight parameter in the param list. I am going through the following code which is using the Higgs data;
Due to the data being unbalanced, the author defines a weight parameter:
weight <- as.numeric(dtrain[[32]]) * testsize / length(label)
sumwpos <- sum(weight * (label==1.0))
sumwneg <- sum(weight * (label==0.0))
However column 32 is already a weight variable, so the author is modifying an already defined weight variable?
Then, the modified weight variable is being set as the "weight" argument of xgb.DMatrix:
xgmat <- xgb.DMatrix(data, label = label, weight = weight, missing = -999.0)
Additionally, in the param list the author has: "scale_pos_weight" = sumwneg / sumwpos,.
so scale_pos_weight is a function of sumneg which is a function of weight which is a function of a previously defined weight (column 32). So I am confused.
What does the author do in the following line: weight <- as.numeric(dtrain[[32]]) * testsize / length(label)
What is the difference in setting the weight in xgb.DMatrix and again in sum_pos_weight?
When you set
xgmat <- xgb.DMatrix(data, label = label, weight = weight, missing = -999.0)
weight should be a vector corresponding to your data rows
If for example you have the following data:
A B C
1 1 1 1
2 2 2 2
you need to set weight as a vector of 2 weights
weight <- c(1, 2)
So you will have a weight of 1 to the first event and weight of 2 to the 2nd event. You ask your self why is it good? Assume event 1 has happened 1 time and event 2 happened 2 times, you'd like co responsive weights to them specifically mentioning the amount of time that event has occurred.
Here are few more examples for using weights:
If you want recent events to have more "value"
The amount of confidence you have in a data row. you will set all weights to be between 0 to 1 and the weight will represent how much you sure of that data. for example if weight = 0.88 you gave that row 88% confidence
If you have repetitive events. instead of creating more rows, you can set them once and give them a weight as the number they've repeated
scale_pos_weight is usually used when you have "imbalanced data". for example, assuming you have a classification problem where you have 5% of the data as 1 and 95% of the data as 0, you would like to give more weight for every positive "event". So you can just set scale_pos_weight = 19 (or as the author wrote: sumneg/sumpos)
As for the "author" re defining weight. I cannot know without the full code what he did there, but I assume he's doing some sort of normalization to the weights.

Compute annual mean using x-arrays

I have a python xarray dataset with time,x,y for its dimensions and value1 as its variable. I'm trying to compute annual mean of value1 for each x,y coordinate pair.
I've run into this function while reading the docs:
ds.groupby('time.year').mean()
This seems to compute a single annual mean for all x,y coordinate pairs in value1 at each given time slice
rather than the annual means of individual x,y coordinate pairs at each given time slice.
While the code snippet above produces the wrong output, I'm very interested in its oversimplified form. I would really like to figure out the "X-arrays trick" to doing annual mean for a given x,y coordinate pair rather than hacking it together myself.
Cam someone point me in the right direction? Should I temporarily turn this into a pandas object?
To avoid the default of averaging over all dimensions, you simply need to supply the dimension you want to average over explicitly:
ds.groupby('time.year').mean('time')
Note, that calling ds.groupby('time.year').mean('time') will be incorrect if you are working with monthly and not daily data. Taking the mean will place equal weight on months of different length, e.g., Feb and July, which is wrong.
Instead use below from NCAR:
def weighted_temporal_mean(ds, var):
"""
weight by days in each month
"""
# Determine the month length
month_length = ds.time.dt.days_in_month
# Calculate the weights
wgts = month_length.groupby("time.year") / month_length.groupby("time.year").sum()
# Make sure the weights in each year add up to 1
np.testing.assert_allclose(wgts.groupby("time.year").sum(xr.ALL_DIMS), 1.0)
# Subset our dataset for our variable
obs = ds[var]
# Setup our masking for nan values
cond = obs.isnull()
ones = xr.where(cond, 0.0, 1.0)
# Calculate the numerator
obs_sum = (obs * wgts).resample(time="AS").sum(dim="time")
# Calculate the denominator
ones_out = (ones * wgts).resample(time="AS").sum(dim="time")
# Return the weighted average
return obs_sum / ones_out
average_weighted_temp = weighted_temporal_mean(ds_first_five_years, 'TEMP')

Finding standard deviation using only mean, min, max?

I want to find the standard deviation:
Minimum = 5
Mean = 24
Maximum = 84
Overall score = 90
I just want to find out my grade by using the standard deviation
Thanks,
A standard deviation cannot in general be computed from just the min, max, and mean. This can be demonstrated with two sets of scores that have the same min, and max, and mean but different standard deviations:
1 2 4 5 : min=1 max=5 mean=3 stdev≈1.5811
1 3 3 5 : min=1 max=5 mean=3 stdev≈0.7071
Also, what does an 'overall score' of 90 mean if the maximum is 84?
I actually did a quick-and-dirty calculation of the type M Rad mentions. It involves assuming that the distribution is Gaussian or "normal." This does not apply to your situation but might help others asking the same question. (You can tell your distribution is not normal because the distance from mean to max and mean to min is not close). Even if it were normal, you would need something you don't mention: the number of samples (number of tests taken in your case).
Those readers who DO have a normal population can use the table below to give a rough estimate by dividing the difference of your measured minimum and your calculated mean by the expected value for your sample size. On average, it will be off by the given number of standard deviations. (I have no idea whether it is biased - change the code below and calculate the error without the abs to get a guess.)
Num Samples Expected distance Expected error
10 1.55 0.25
20 1.88 0.20
30 2.05 0.18
40 2.16 0.17
50 2.26 0.15
60 2.33 0.15
70 2.38 0.14
80 2.43 0.14
90 2.47 0.13
100 2.52 0.13
This experiment shows that the "rule of thumb" of dividing the range by 4 to get the standard deviation is in general incorrect -- even for normal populations. In my experiment it only holds for sample sizes between 20 and 40 (and then loosely). This rule may have been what the OP was thinking about.
You can modify the following python code to generate the table for different values (change max_sample_size) or more accuracy (change num_simulations) or get rid of the limitation to multiples of 10 (change the parameters to xrange in the for loop for idx)
#!/usr/bin/python
import random
# Return the distance of the minimum of samples from its mean
#
# Samples must have at least one entry
def min_dist_from_estd_mean(samples):
total = 0
sample_min = samples[0]
for sample in samples:
total += sample
sample_min = min(sample, sample_min)
estd_mean = total / len(samples)
return estd_mean - sample_min # Pos bec min cannot be greater than mean
num_simulations = 4095
max_sample_size = 100
# Calculate expected distances
sum_of_dists=[0]*(max_sample_size+1) # +1 so can index by sample size
for iternum in xrange(num_simulations):
samples=[random.normalvariate(0,1)]
while len(samples) <= max_sample_size:
sum_of_dists[len(samples)] += min_dist_from_estd_mean(samples)
samples.append(random.normalvariate(0,1))
expected_dist = [total/num_simulations for total in sum_of_dists]
# Calculate average error using that distance
sum_of_errors=[0]*len(sum_of_dists)
for iternum in xrange(num_simulations):
samples=[random.normalvariate(0,1)]
while len(samples) <= max_sample_size:
ave_dist = expected_dist[len(samples)]
if ave_dist > 0:
sum_of_errors[len(samples)] += \
abs(1 - (min_dist_from_estd_mean(samples)/ave_dist))
samples.append(random.normalvariate(0,1))
expected_error = [total/num_simulations for total in sum_of_errors]
cols=" {0:>15}{1:>20}{2:>20}"
print(cols.format("Num Samples","Expected distance","Expected error"))
cols=" {0:>15}{1:>20.2f}{2:>20.2f}"
for idx in xrange(10,len(expected_dist),10):
print(cols.format(idx, expected_dist[idx], expected_error[idx]))
Yo can obtain an estimate of the geometric mean, sometimes called the geometric mean of the extremes or GME, using the Min and the Max by calculating the GME= $\sqrt{ Min*Max }$. The SD can be then calculated using your arithmetic mean (AM) and the GME as:
SD= $$\frac{AM}{GME} * \sqrt{(AM)^2-(GME)^2 }$$
This approach works well for log-normal distributions or as long as the GME, GM or Median is smaller than the AM.
In principle you can make an estimate of standard deviation from the mean/min/max and the number of elements in the sample. The min and max of a sample are, if you assume normality, random variables whose statistics follow from mean/stddev/number of samples. So given the latter, one can compute (after slogging through the math or running a bunch of monte carlo scripts) a confidence interval for the former (like it is 80% probable that the stddev is between 20 and 40 or something like that).
That said, it probably isn't worth doing except in extreme situations.

Estimated size of the self-join operation on a relation R, given a histogram for R

Query optimizers typically use summaries of data distributions to estimate the sizes of the intermediate tables generated during query processing. One popular such summarization scheme is a histogram, whereby the input range is partitioned into buckets and a cumulative count is maintained of the number of tuples falling in each bucket. The distribution within a bucket is assumed to be uniform for the purposes of estimation.
The following shows one such histogram for a relation R on a discrete attribute a with domain [1..10]:
Bucket 1: range = [1..2] Cumulative tuple count = 6
Bucket 2: range = [3..8] Cumulative tuple count = 30
Bucket 3: range = [9..10] Cumulative tuple count = 10
What is the estimated size of the self-join operation R x R
A) 46
B) 218
C) 248
D) 1,036
E) 5,672
Answer given in solutions : B
How is the answer to be calculated?
The size of a self-join on attribute R is equal to the summation of the frequency of each value of attribute R.
Here the frequency is given in buckets, e.g. the first bucket has 2 values r with frequency = 6, so we can assume the frequency of each value in bucket one is frequency = 3, similarly for bucket two frequency of each = 30/6 = 5, and for bucket three frequency of each value = 10/2 = 5.
Therefore, the size is
Size = [(3^2)*2] + [(5^2)*6] + [(5^2)*2]
= 218
I've been trying to figure this one out myself (it's from the GRE Computer Science subject test preparation exam).
So far I haven't found an answer as to why the answer is 218, but I have found a connection between the numbers given and the correct answer.
It turns out that that sum of the square of the cumulative tuple counts divided by the number of discrete values in each bucket, you get 218. Less abstractly: 6²/2 + 30²/5 + 10²/2 = 218.
It's not an answer, but at least there's a connection =)

Resources