I'm doing some feature detection/pattern matching based on the OpenCV example code shown at https://docs.opencv.org/3.4/d5/dde/tutorial_feature_description.html
In my example, input2 is an image with a size of 256x256 pixels and input1 is a subimage out of image2 (e.g. with an offset of 5x5 pixels and a size of 200x80 pixels).
Everything works fine: OpenCV detects a larger number of keypoints and descriptors in image2 than in image1 and after matching the two descriptors, "matches" contains exactly as much elements as we had incoming descriptors1.
Until now everything is logical and fits: the number of matches is exactly the number of keypoints/descriptors which are expected in the subimage part.
My problem with this: the elements in "matches" all have a way too back distance value! They all are bigger than 5 (my subimage offset) and most of them are bigger than 256 (the total image size)!
What could be the reason for this?
Thanks!
Update: here you find the image(s) I'm working with:
The whole image is my input2 (don't worry about not having it a size of 256x256 pixels, this is taken out of a screenshot which shows more things). The blue, dashed rectangle in the middle shows my input1 and the circles within this rectangle mark the already detected keypoints1.
The behavior of the code appears to differ between versions 2.x and 3.x.
Related
I have a customized camera, which contains 3 individual lens+filters arranged in a triangle so in every shot I get 3 single band grayscale images (r, g, b). I want to merge them to get an RGB.
The problem is, since the 3 lens are physically separated, the image captured by them are not aligned. As a result, when I use command qdal_merge in the software pack QGIS, the result looks weird. I may also need to adjust the weight of the r,g,b. I put the raw r,g,b images and the output I generated using qgis in this dropbox folder.
Is there existing open-source tool to do the alignment and merge? If not, how can I do it using opencv?
Combining R,G,B images is possible using a simple pixel intensity distance metric like Sum of Squared Distances (SSD). A better metric is the Normalized Cross-Correlation (NCC) (see Wikipedia) which first normalizes an image matrix into a unit vector, and computes the dot product of such unit vectors (from 2 input images). The higher the NCC value, the greater the similarity of the two input images.
However, NCC similarity may be insufficient for computing the best alignment of two high resolution images, such as the TIFF images you provide. One should therefore use a downsampling method as described below
to align two input images at a smaller size and then simply compute the offset as you rescale the images.
So for the input images, red, green and blue, there are two approaches to align them into a single RGB image:
Consider the blue image as the reference image for example, w.r.t. which we align the red and green images. Now consider red and blue images. Within a certain window, compute the best alignment offset of the red and blue images using the NCC similarity metric, and find the shifted_red image. Do the same for the green and blue images. Now combine the shifted_red, shifted_green and blue images to get the final RGB image.
For high-resolution images, decide a scale_count. Recursively, at each step resize the image by half, compute the offset of the red image w.r.t. the blue image, rescale the offset and apply it. The benefit of doing such a recursive multi-scale alignment is decrease in computation time and increase in accuracy of alignment (you don't know the best window size for searching for alignment offsets for solution (1), so this will work better). Repeat this approach for computing the alignment for green and blue channels, and then combine the final results as in (1).
Since this problem is common in assignments of computational photography courses, I am not going to share any code. I have, however implemented the two approaches and experimented with the images you provide. I don't know which of the input images is red, so I have two results (rescaled to decrease file size):
If IMG_0290_1.tif is Red, IMG_0290_2.tif is Green and IMG_0290_3.tif is blue:
RGB result if red:1, green:2, blue:3
If IMG_0290_3.tif is Red, IMG_0290_2.tif is Green and IMG_0290_1.tif is blue (this looks more correct to me):
RGB result if red:3, green:2, blue:1
If a program displays a pixel at X,Y on a display with resolution A, can I precisely predict at what coordinates the same pixel will display at resolution B?
MORE INFORMATION
The 2 display resolutions are:
A-->1366 x 768
B-->1600 x 900
Dividing the max resolutions in each direction yields:
X-direction scaling factor = 1600/1366 = 1.171303075
Y-direction scaling factor = 900/768 = 1.171875
Say for example that the only red pixel on display A occurs at pixel (1,1). If I merely scale up using these factors, then on display B, that red pixel will be displayed at pixel (1.171303075, 1.171875). I'm not sure how to interpret that, as I'm used to thinking of pixels as integer values. It might help if I knew the exact geometry of pixel coordinates/placement on a screen. e.g., do pixel coordinates (1,1) mean that the center of the pixel is at (1,1)? Or a particular corner of the pixel is at (1,1)? I'm sure diagrams would assist in visualizing this--if anyone can post a link to helpful resources, I'd appreciate it. And finally, I may be approaching this all wrong.
Thanks in advance.
I think, your problem is related to the field of scaling/resampling images. Bitmap-, or raster images are digital photographs, so they are the most common form to represent natural images that are rich in detail. The term bitmap refers to how a given pattern (bits in a pixel) maps to a specific color. A bitmap images take the form of an array, where the value of each element, called a pixel picture element, correspond to the color of that region of the image.
Sampling
When measuring the value for a pixel, one takes the average color of an area around the location of the pixel. A simplistic model is sampling a square, and a more accurate measurement is to calculate a weighted Gaussian average. When perceiving a bitmap image the human eye should blend the pixel values together, recreating an illusion of the continuous image it represents.
Raster dimensions
The number of horizontal and vertical samples in the pixel grid is called raster dimensions, it is specified as width x height.
Resolution
Resolution is a measurement of sampling density, resolution of bitmap images give a relationship between pixel dimensions and physical dimensions. The most often used measurement is ppi, pixels per inch.
Scaling / Resampling
Image scaling is the name of the process when we need to create an image with different dimensions from what we have. A different name for scaling is resampling. When resampling algorithms try to reconstruct the original continuous image and create a new sample grid. There are two kind of scaling: up and down.
Scaling image down
The process of reducing the raster dimensions is called decimation, this can be done by averaging the values of source pixels contributing to each output pixel.
Scaling image up
When we increase the image size we actually want to create sample points between the original sample points in the original raster, this is done by interpolation the values in the sample grid, effectively guessing the values of the unknown pixels. This interpolation can be done by nearest-neighbor interpolation, bilinear interpolation, bicubic interpolation, etc. But the scaled up/down image must be also represented over discrete grid.
I am trying to work out the difference between Erosion and Dilation for binary and grayscale images.
As far as I know, this is erosion/dilation for binary images...
Erosion: If every pixel corresponding to an SE index that has 1 is a 1, output a 1. Otherwise 0.
Dilation: If at least one pixel corresponding to an SE index that has 1 is a 1, output a 1. Otherwise 0.
My question is, how does this work for 16-bit (0, 65535) grayscale images?
So what we have to do is to create an structual Element, that could be for example:
The formula says for dilation says:
image http://utam.gg.utah.edu/tomo03/03_mid/HTML/img642.png
and for erosion:
image http://utam.gg.utah.edu/tomo03/03_mid/HTML/img643.png
that means with have to take the maximum or minumum of each kernel values in the image and add 10 to it. If we have for example:
it goes to using dilation:
How you can see you just look at pixel position x,y take the center and add 10 to it. Then you check the neighbors if the computed value is the maximum. If it is a new maximum the pixel value get replaced, when not the pixel value stays. Hope it is clear for erosion you just take the minimum.
I am looking for a "very" simple way to check if an image bitmap is blur. I do not need accurate and complicate algorithm which involves fft, wavelet, etc. Just a very simple idea even if it is not accurate.
I've thought to compute the average euclidian distance between pixel (x,y) and pixel (x+1,y) considering their RGB components and then using a threshold but it works very bad. Any other idea?
Don't calculate the average differences between adjacent pixels.
Even when a photograph is perfectly in focus, it can still contain large areas of uniform colour, like the sky for example. These will push down the average difference and mask the details you're interested in. What you really want to find is the maximum difference value.
Also, to speed things up, I wouldn't bother checking every pixel in the image. You should get reasonable results by checking along a grid of horizontal and vertical lines spaced, say, 10 pixels apart.
Here are the results of some tests with PHP's GD graphics functions using an image from Wikimedia Commons (Bokeh_Ipomea.jpg). The Sharpness values are simply the maximum pixel difference values as a percentage of 255 (I only looked in the green channel; you should probably convert to greyscale first). The numbers underneath show how long it took to process the image.
If you want them, here are the source images I used:
original
slightly blurred
blurred
Update:
There's a problem with this algorithm in that it relies on the image having a fairly high level of contrast as well as sharp focused edges. It can be improved by finding the maximum pixel difference (maxdiff), and finding the overall range of pixel values in a small area centred on this location (range). The sharpness is then calculated as follows:
sharpness = (maxdiff / (offset + range)) * (1.0 + offset / 255) * 100%
where offset is a parameter that reduces the effects of very small edges so that background noise does not affect the results significantly. (I used a value of 15.)
This produces fairly good results. Anything with a sharpness of less than 40% is probably out of focus. Here's are some examples (the locations of the maximum pixel difference and the 9×9 local search areas are also shown for reference):
(source)
(source)
(source)
(source)
The results still aren't perfect, though. Subjects that are inherently blurry will always result in a low sharpness value:
(source)
Bokeh effects can produce sharp edges from point sources of light, even when they are completely out of focus:
(source)
You commented that you want to be able to reject user-submitted photos that are out of focus. Since this technique isn't perfect, I would suggest that you instead notify the user if an image appears blurry instead of rejecting it altogether.
I suppose that, philosophically speaking, all natural images are blurry...How blurry and to which amount, is something that depends upon your application. Broadly speaking, the blurriness or sharpness of images can be measured in various ways. As a first easy attempt I would check for the energy of the image, defined as the normalised summation of the squared pixel values:
1 2
E = --- Σ I, where I the image and N the number of pixels (defined for grayscale)
N
First you may apply a Laplacian of Gaussian (LoG) filter to detect the "energetic" areas of the image and then check the energy. The blurry image should show considerably lower energy.
See an example in MATLAB using a typical grayscale lena image:
This is the original image
This is the blurry image, blurred with gaussian noise
This is the LoG image of the original
And this is the LoG image of the blurry one
If you just compute the energy of the two LoG images you get:
E = 1265 E = 88
or bl
which is a huge amount of difference...
Then you just have to select a threshold to judge which amount of energy is good for your application...
calculate the average L1-distance of adjacent pixels:
N1=1/(2*N_pixel) * sum( abs(p(x,y)-p(x-1,y)) + abs(p(x,y)-p(x,y-1)) )
then the average L2 distance:
N2= 1/(2*N_pixel) * sum( (p(x,y)-p(x-1,y))^2 + (p(x,y)-p(x,y-1))^2 )
then the ratio N2 / (N1*N1) is a measure of blurriness. This is for grayscale images, for color you do this for each channel separately.
Given an image (Like the one given below) I need to convert it into a binary image (black and white pixels only). This sounds easy enough, and I have tried with two thresholding functions. The problem is I cant get the perfect edges using either of these functions. Any help would be greatly appreciated.
The filters I have tried are, the Euclidean distance in the RGB and HSV spaces.
Sample image:
Here it is after running an RGB threshold filter. (40% it more artefects after this)
Here it is after running an HSV threshold filter. (at 30% the paths become barely visible but clearly unusable because of the noise)
The code I am using is pretty straightforward. Change the input image to appropriate color spaces and check the Euclidean distance with the the black color.
sqrt(R*R + G*G + B*B)
since I am comparing with black (0, 0, 0)
Your problem appears to be the variation in lighting over the scanned image which suggests that a locally adaptive thresholding method would give you better results.
The Sauvola method calculates the value of a binarized pixel based on the mean and standard deviation of pixels in a window of the original image. This means that if an area of the image is generally darker (or lighter) the threshold will be adjusted for that area and (likely) give you fewer dark splotches or washed-out lines in the binarized image.
http://www.mediateam.oulu.fi/publications/pdf/24.p
I also found a method by Shafait et al. that implements the Sauvola method with greater time efficiency. The drawback is that you have to compute two integral images of the original, one at 8 bits per pixel and the other potentially at 64 bits per pixel, which might present a problem with memory constraints.
http://www.dfki.uni-kl.de/~shafait/papers/Shafait-efficient-binarization-SPIE08.pdf
I haven't tried either of these methods, but they do look promising. I found Java implementations of both with a cursory Google search.
Running an adaptive threshold over the V channel in the HSV color space should produce brilliant results. Best results would come with higher than 11x11 size window, don't forget to choose a negative value for the threshold.
Adaptive thresholding basically is:
if (Pixel value + constant > Average pixel value in the window around the pixel )
Pixel_Binary = 1;
else
Pixel_Binary = 0;
Due to the noise and the illumination variation you may need an adaptive local thresholding, thanks to Beaker for his answer too.
Therefore, I tried the following steps:
Convert it to grayscale.
Do the mean or the median local thresholding, I used 10 for the window size and 10 for the intercept constant and got this image (smaller values might also work):
Please refer to : http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm if you need more
information on this techniques.
To make sure the thresholding was working fine, I skeletonized it to see if there is a line break. This skeleton may be the one needed for further processing.
To get ride of the remaining noise you can just find the longest connected component in the skeletonized image.
Thank you.
You probably want to do this as a three-step operation.
use leveling, not just thresholding: Take the input and scale the intensities (gamma correct) with parameters that simply dull the mid tones, without removing the darks or the lights (your rgb threshold is too strong, for instance. you lost some of your lines).
edge-detect the resulting image using a small kernel convolution (5x5 for binary images should be more than enough). Use a simple [1 2 3 2 1 ; 2 3 4 3 2 ; 3 4 5 4 3 ; 2 3 4 3 2 ; 1 2 3 2 1] kernel (normalised)
threshold the resulting image. You should now have a much better binary image.
You could try a black top-hat transform. This involves substracting the Image from the closing of the Image. I used a structural element window size of 11 and a constant threshold of 0.1 (25.5 on for a 255 scale)
You should get something like:
Which you can then easily threshold:
Best of luck.