I have many endpoints in my app:
/Route1
/Route2
...
/Route99
In a number of these routes, there is some common functionality such as getting specific data from one source such as a local file, or another resource such as a No SQL database or external HTTP endpoint. My problem is that these services need to have a service dependency themselves, and I am not sure that how I have currently done it is the best way to do it in NestJS.
Route1Service - Read a file of data, and return it. This uses the FileSystemService() to wrap all the error handling, different data types, path checking etc., of the NodeJS fs module. The Route1Service then returns this to the Route1Controller
#Injectable()
export class Route1Service {
private FS_:FileSystemService; // defined here instead of constructor, as I do not know how to set it in the constructor via NestJS, or if this is even the best way.
// constructor(private FS_: FileSystemService) { }
// Since I do not set it in the constructor
public DataServiceDI(FsService:FileSystemService):void {
this.FS_ = FsService;
}
public GetData(): string {
const Data:string = this.FS_.ReadLocalFile('a.txt');
return Data;
}
}
Route99Service might do the same thing, but with a different file (b.txt)
#Injectable()
export class Route99Service {
private FS_:FileSystemService;
public DataServiceDI(FsService:FileSystemService):void {
this.FS_ = FsService;
}
public GetData(): string {
const Data:string = this.FS_.ReadLocalFile('b.txt');
return Data;
}
}
This is a contrived example to illustrate my issue. Obviously a basic RouteService could be used, and pass the file name, but I am trying to illustrate the dependent service. I do not know how to define the module(s) to use this dependent service or if I should be doing it this way.
What I have been doing for my definition:
#Module({
controllers: [Route1Controller],
providers: [Route1Service, FileSystemService],
})
export class Route1Module {}
The controller than has the constructor with both Services:
#Controller('route1')
export class Route1Controller
constructor(
private Route1_: Route1Service,
private FsSystem_: FileSystemService
) { }
Now that my controller has the FsSystem service as a separate entity, I need to add a method on my Route1Service, DataServiceDI(), to allow me to pass the FileSystemService as a reference. Then my service can use this service to access the file system.
My question comes down to, is this the best practice for this sort of thing? Ultimately, in my code, these services (FileSystemService, NoSqlService) extend a common service type, so that all my services can have this DataServiceDI() in then (they extend a base service with this definition).
Is this the best approach for longer term maintainability? Is there an easier way to simply inject the proper service into my Route1Service so it is injected by NestJS, and I do not have to do the DI each time?
The current method works for me to be able to simply test the service, since I can easily mock the FileSystemServie, NoSqlService, etc., and then inject the mock.
Related
I have a class that serves as a model for some data I get from a server. This data starts as an unwieldy xml object where text nodes have attributes so the json format I convert it into does not have simple string values. Instead I have:
#Injectable()
export class FooString {
_attr: string;
value: string;
isReadOnly(): boolean {
return this._attr && this._attr === 'ReadOnly';
}
isHidden(): boolean {
return this._attr && this._attr === 'Hid';
}
}
Then my model is like:
#Injectable()
export class Payment {
constructor(
public FooId: FooString,
public FooStat: FooString,
public FooName: FooString ) { }
}
Everything ends up with the same instance of FooString. How do I get discrete instances for each of them?
I have tried a factory, but it still only creates a single instance:
export let fooStringProvider = provide(FooString, {
useFactory: (): FooString => {
console.log('in foostring factory');
return new FooString();
}
});
new FooString();
new Payment();
;-)
Why using DI when they don't have dependencies and you don't want to maintain single instances per provider. Therefore, just use new.
When to use DI
There are a few criterias when using DI instead of new the right thing:
If you want Angular to maintain and share instances
If you want to work with an interface or base class but then you want to configure from the outside what implementation should actually be used at runtime - like the MockBackend for Http during testing.
If you class has dependencies to instances and/or values provided by DI
If you want to be able to easily test classes in isolation (https://en.wikipedia.org/wiki/Inversion_of_control)
probably others ...
If there are good arguments to use DI, but you also want new instances then you can just provide a factory.
This answer https://stackoverflow.com/a/36046754/217408 contains a concrete example how to do that.
Using DI is usually a good idea. There are IMHO no strong arguments against using DI. Only when none of the above arguments apply and providing factories is too cumbersome, use new Xxx() instead.
I am trying to find out how I can pass the StructrueMap container to a class that I wrote that inherits from another (MS-Class).
namespace TheNamespace
{
public class DatabaseIssuerNameRegistry : ValidatingIssuerNameRegistry
{
/* **This can't be done**
public DatabaseIssuerNameRegistry(IPortalTenantManager portalTenantManager)
{
_someField= portalTenantManager;
}*/
protected override bool IsThumbprintValid(string thumbprint, string issuer)
{
//How does it work ???????????
var portalTenantManager = container.GetInstance<IPortalTenantManager>();
//Do something with the portalTenantManager
}
}
I need portalTenantManager to be the Instance that I have defined in my container in the Global.asax.
My Global Assax has these things setup:
protected void Application_Start()
{
var container = new Container();
container.Configure(x =>
{ ....
....
x.For<IPortalTenantManager>().Use<PortalTenantManager>();
});
...
...
ControllerBuilder.Current.SetControllerFactory(new StructureMapControllerFactory(container));
...
GlobalConfiguration.Configuration.DependencyResolver = new StructureMapApiControllerFactory(container);
...
}
Edit:
Because of the comments of #NightOwl888 I'll explain a bit further what this class does. (Hopefully explaining so why my hands are tied)
My application is able to authenticate a user with Azure Active Directory and is Multi-tenant capable. In the authentication pipeline I have the possibility to store the validation endpoints in my database instead of the default way on the web.config file. See MSDN
and this, which actually is explaining exactly what I'm doing.
So I registered my class in the web.config under the Tag issuerNameRegistry. At some point of the validation pipeline my class is instantiated and the overriden method IsThumbprintValid is beeing called. The problem is that the class registered in issuerNameRegistry expects a parameterless constructor (there it is! the constrained construction!), therefore I cannot create a constructor that would solve my problem.
Thanks for your help
It turns out that this question has been asked before on MSDN, the answer of which was provided by Travis Spencer in 2 different posts.
it is typical in my experience to have a single container and use that service- or Web-side-wide. In the startup of the service or Web app, you can create the container, register the dependencies, new up an instance of your SecurityTokenServiceConfiguration class, resolve your dependencies, use it to punch out a SecurityTokenService object, and host it.
After the first beta, we really pushed for DI support. We got a little hook in beta 2. You can now create a custom SecurityTokenServiceConfiguration class that overrides the virtual CreateSecurityTokenService method. The implementation in Microsoft's SecurityTokenServiceConfiguration does Activator.CreateInstance; yours can do IoC. This can include the resolution of an IssuerNameRegistiry. Something like this perhaps:
RequestSecurityTokenResponse Issue(IClaimsPrincipal principal, RequestSecurityToken request)
{
SecurityTokenServiceConfiguration config = new MyGoodSecurityTokenServiceConfiguration();
SecurityTokenService sts = config.CreateSecurityTokenService();
RequestSecurityTokenResponse rstr = sts.Issue(principal, request);
return rstr;
}
public class MyGoodSecurityTokenServiceConfiguration : SecurityTokenServiceConfiguration
{
public override SecurityTokenService CreateSecurityTokenService()
{
IssuerNameRegistry = IoC.Resolve<IssuerNameRegistry>();
var sts = IoC.Reslove<SecurityTokenService>();
return sts;
}
}
Of course, this means that you need to create a static instance of your DI container so it is accessible to your SecurityTokenServiceConfiguration class. Personally, I don't like that idea because it makes your DI container accessible throughout the application, which can lead to abuse of the DI container as a service locator.
Ideally, there would be a way in any DI friendly framework to pass the container into an abstract factory in order to resolve service dependencies. However, since I am not familiar with WIF it is unclear whether that can be done - perhaps the class where the Issue method exists could have a constructor added? The trick is to keep walking up the chain until you find the first place in the framework where you can intervene and do all of your DI configuration there.
I have been doing my first Test Driven Development project recently and have been learning Ninject and MOQ. This is my first attempt at all this. I've found the TDD approach has been thought provoking, and Ninject and MOQ have been great. The project I am working on has not particularly been the best fit for Ninject as it is a highly configurable C# program that is designed to test the use of a web service interface.
I have broken it up into modules and have interfaces all over the shop, but I am still finding that I am having to use lots of constructor arguments when getting an implementation of a service from the Ninject kernel. For example;
In my Ninject module;
Bind<IDirEnum>().To<DirEnum>()
My DirEnum class;
public class DirEnum : IDirEnum
{
public DirEnum(string filePath, string fileFilter,
bool includeSubDirs)
{
....
In my Configurator class (this is the main entry point) that hooks all the services together;
class Configurator
{
public ConfigureServices(string[] args)
{
ArgParser argParser = new ArgParser(args);
IDirEnum dirEnum = kernel.Get<IDirEnum>(
new ConstructorArgument("filePath", argParser.filePath),
new ConstructorArgument("fileFilter", argParser.fileFilter),
new ConstructorArgument("includeSubDirs", argParser.subDirs)
);
filePath, fileFilter and includeSubDirs are command line options to the program. So far so good. However, being a conscientious kind of guy, I have a test covering this bit of code. I'd like to use a MOQ object. I have created a Ninject module for my tests;
public class TestNinjectModule : NinjectModule
{
internal IDirEnum mockDirEnum {set;get};
Bind<IDirEnum>().ToConstant(mockDirEnum);
}
And in my test I use it like this;
[TestMethod]
public void Test()
{
// Arrange
TestNinjectModule testmodule = new TestNinjectModule();
Mock<IDirEnum> mockDirEnum = new Mock<IDirEnum>();
testModule.mockDirEnum = mockDirEnum;
// Act
Configurator configurator = new Configurator();
configurator.ConfigureServices();
// Assert
here lies my problem! How do I test what values were passed to the
constructor arguments???
So the above shows my problem. How can I test what arguments were passed to the ConstructorArguments of the mock object? My guess is that Ninject is dispensing of the ConstuctorArguments in this case as the Bind does not require them? Can I test this with a MOQ object or do I need to hand code a mock object that implements DirEnum and accepts and 'records' the constructor arguments?
n.b. this code is 'example' code, i.e. I have not reproduced my code verbatim, but I think I have expressed enough to hopefully convey the issues? If you need more context, please ask!
Thanks for looking. Be gentle, this is my first time ;-)
Jim
There are a few problems with the way you designed your application. First of all, you are calling the Ninject kernel directly from within your code. This is called the Service Locator pattern and it is considered an anti-pattern. It makes testing your application much harder and you are already experiencing this. You are trying to mock the Ninject container in your unit test, which complicates things tremendously.
Next, you are injecting primitive types (string, bool) in the constructor of your DirEnum type. I like how MNrydengren states it in the comments:
take "compile-time" dependencies
through constructor parameters and
"run-time" dependencies through method
parameters
It's hard for me to guess what that class should do, but since you are injecting these variables that change at run-time into the DirEnum constructor, you end up with a hard to test application.
There are multiple ways to fix this. Two that come in mind are the use of method injection and the use of a factory. Which one is feasible is up to you.
Using method injection, your Configurator class will look like this:
class Configurator
{
private readonly IDirEnum dirEnum;
// Injecting IDirEnum through the constructor
public Configurator(IDirEnum dirEnum)
{
this.dirEnum = dirEnum;
}
public ConfigureServices(string[] args)
{
var parser = new ArgParser(args);
// Inject the arguments into a method
this.dirEnum.SomeOperation(
argParser.filePath
argParser.fileFilter
argParser.subDirs);
}
}
Using a factory, you would need to define a factory that knows how to create new IDirEnum types:
interface IDirEnumFactory
{
IDirEnum CreateDirEnum(string filePath, string fileFilter,
bool includeSubDirs);
}
Your Configuration class can now depend on the IDirEnumFactory interface:
class Configurator
{
private readonly IDirEnumFactory dirFactory;
// Injecting the factory through the constructor
public Configurator(IDirEnumFactory dirFactory)
{
this.dirFactory = dirFactory;
}
public ConfigureServices(string[] args)
{
var parser = new ArgParser(args);
// Creating a new IDirEnum using the factory
var dirEnum = this.dirFactory.CreateDirEnum(
parser.filePath
parser.fileFilter
parser.subDirs);
}
}
See how in both examples the dependencies get injected into the Configurator class. This is called the Dependency Injection pattern, opposed to the Service Locator pattern, where the Configurator asks for its dependencies by calling into the Ninject kernel.
Now, since your Configurator is completely free from any IoC container what so ever, you can now easily test this class, by injecting a mocked version of the dependency it expects.
What is left is to configure the Ninject container in the top of your application (in DI terminology: the composition root). With the method injection example, your container configuration would stay the same, with the factory example, you will need to replace the Bind<IDirEnum>().To<DirEnum>() line with something as follows:
public static void Bootstrap()
{
kernel.Bind<IDirEnumFactory>().To<DirEnumFactory>();
}
Of course, you will need to create the DirEnumFactory:
class DirEnumFactory : IDirEnumFactory
{
IDirEnum CreateDirEnum(string filePath, string fileFilter,
bool includeSubDirs)
{
return new DirEnum(filePath, fileFilter, includeSubDirs);
}
}
WARNING: Do note that factory abstractions are in most cases not the best design, as explained here.
The last thing you need to do is to create a new Configurator instance. You can simply do this as follows:
public static Configurator CreateConfigurator()
{
return kernel.Get<Configurator>();
}
public static void Main(string[] args)
{
Bootstrap():
var configurator = CreateConfigurator();
configurator.ConfigureServices(args);
}
Here we call the kernel. Although calling the container directly should be prevented, there will always at least be one place in your application where you call the container, simply because it must wire everything up. However, we try to minimize the number of times the container is called directly, because it improves -among other things- the testability of our code.
See how I didn't really answer your question, but showed a way to work around the problem very effectively.
You might still want to test your DI configuration. That's very valid IMO. I do this in my applications. But for this, you often don't need the DI container, or even if your do, this doesn't mean that all your tests should have a dependency on the container. This relationship should only exist for the tests that test the DI configuration itself. Here is a test:
[TestMethod]
public void DependencyConfiguration_IsConfiguredCorrectly()
{
// Arrange
Program.Bootstrap();
// Act
var configurator = Program.CreateConfigurator();
// Assert
Assert.IsNotNull(configurator);
}
This test indirectly depends on Ninject and it will fail when Ninject is not able to construct a new Configurator instance. When you keep your constructors clean from any logic and only use it for storing the taken dependencies in private fields, you can run this, without the risk of calling out to a database, web service or what so ever.
I hope this helps.
We are trying to figure out how to setup Dependency Injection for situations where service classes can have different dependencies based on how they are used. In our specific case, we have a web app where 95% of the time the connection string is the same for the entire Request (this is a web application), but sometimes it can change.
For example, we might have 2 classes with the following dependencies (simplified version - service actually has 4 dependencies):
public LoginService (IUserRepository userRep)
{
}
public UserRepository (IContext dbContext)
{
}
In our IoC container, most of our dependencies are auto-wired except the Context for which I have something like this (not actual code, it's from memory ... this is StructureMap):
x.ForRequestedType().Use()
.WithCtorArg("connectionString").EqualTo(Session["ConnString"]);
For 95% of our web application, this works perfectly. However, we have some admin-type functions that must operate across thousands of databases (one per client). Basically, we'd want to do this:
public CreateUserList(IList<string> connStrings)
{
foreach (connString in connStrings)
{
//first create dependency graph using new connection string
????
//then call service method on new database
_loginService.GetReportDataForAllUsers();
}
}
My question is: How do we create that new dependency graph for each time through the loop, while maintaining something that can easily be tested?
To defer the creation of an object until runtime, you can use a factory:
public interface ILoginServiceFactory
{
ILoginService CreateLoginService(string connectionString);
}
Usage:
public void CreateUserList(IList<string> connStrings)
{
foreach(connString in connStrings)
{
var loginService = _loginServiceFactory.CreateLoginService(connString);
loginService.GetReportDataForAllUsers();
}
}
Within the loop, do:
container.With("connectionString").EqualTo(connString).GetInstance<ILoginService>()
where "connectionString" is the name of a string constructor parameter on the concrete implementation of ILoginService.
So most UserRepository methods use a single connection string obtained from session, but several methods need to operate against a list of connection strings?
You can solve this problem by promoting the connection string dependency from IContext to the repository and adding two additional dependencies - a context factory and a list of all the possible connections strings the repository might need to do its work:
public UserRepository(IContextFactory contextFactory,
string defaultConnectionString,
List<string> allConnectionStrings)
Then each of its methods can build as many IContext instances as they need:
// In UserRepository
public CreateUserList() {
foreach (string connString in allConnectionStrings) {
IContext context = contextFactory.CreateInstance(connString);
// Build the rest of the dependency graph, etc.
_loginService.GetReportDataForAllUsers();
}
}
public LoginUser() {
IContext context = contextFactory.CreateInstance(defaultConnectionString);
// Build the rest of the dependency graph, etc.
}
We ended up just creating a concrete context and injecting that, then changing creating a wrapper class that changed the context's connection string. Seemed to work fine.
High Level
With StructureMap, Can I define a assembly scan rule that for an interface IRequestService<T> will return the object named TRequestService
Examples:
FooRequestService is injected when IRequestService<FooRequest> is requested
BarRequestService is injected when IRequestService<BarRequest> is requested
Details
I have a generic interface defined
public interface IRequestService<T> where T : Request
{
Response TransformRequest(T request, User current);
}
and then I have multiple Request objects that implement this interface
public class FooRequestService : IRequestService<Foo>
{
public Response TransformRequest(Foo request, User current) { ... }
}
public class BarRequestService : IRequestService<Bar>
{
public Response TransformRequest(Bar request, User current) { ... }
}
Now I am at the point where I need to register these classes so that StructureMap knows how to create them because in my controller I want have the following ctor (which I want StructureMap to inject a FooRequestService into)
public MyController(IRequestService<Foo> fooRequestService) { ... }
Right now to get around my issue I have implemented an empty interface and instead of having the FooRequestService implement the generic interface I have it implement this empty interface
public interface IFooRequestService : IRequestService<Foo> { }
Then my controllers ctor looks like so, which works with StructureMaps' Default Convention Scanner
public MyController(IFooRequestService fooRequestService) { ... }
How could I create a rule with StructureMap's assembly scanner to register all objects named TRequestService with IRequestService<T> (where T = "Foo", "Bar", etc) so that I don't have to create these empty Interface definitions?
To throw something else into the mix, where I am handling StructureMap's assembly scanning does not have any reference to the assembly that defines IRequestService<T> so this has to use some sort of reflection when doing this. I scanned the answer to "StructureMap Auto registration for generic types using Scan" but it seems as though that answer requires a reference to the assembly that contains the interface definition.
I am on the path of trying to write a custom StructureMap.Graph.ITypeScanner but I am kind of stuck on what to do there (mainly because I have little experience with reflection).
You are on the right path with the scanner. Thankfully there is one built into StructureMap. Unfortunately it is not yet, as of this writing, released. Get the latest from trunk and you will see a few new things available within the scanner configuration. An example for your needs is below.
public class MyRegistry : Registry
{
public MyRegistry()
{
Scan(x =>
{
x.TheCallingAssembly();
//x.AssembliesFromApplicationBaseDirectory();
x.WithDefaultConventions();
x.ConnectImplementationsToTypesClosing(typeof (IRequestService<>));
});
}
}
First you need to tell the scanner configuration which assemblies to include in the scan. The commented AssembliesFromApplicationBaseDirectory() method also might help if you are not doing a registry per assembly.
To get your generic types into the container use ConnectImplementationsToTypesClosing.
For an example on how to setup use registries when setting up the container see:
http://structuremap.sourceforge.net/ConfiguringStructureMap.htm
If you like you can skip using registries in general and just do a scan within ObjectFactory.Initialize.
Hope this helps.