Rerunning the Floyd Steinberg algorithm on a image - image-processing

I implemented a version of the Dithering algorithm in Python (from Image Processing). The algorithm that I used is the Floyd Steinberg algorithm.
I was wondering how the images would change if I will rerun my algorithm on the same image over and over, repeatedly. I noticed that it didn't change at all:
First iteration:
10th iteration:
First of all, is it the correct behavior or something is up with my implementation? It it's correct, I was wondering why after one iteration, it does not do change to the image at all? Is there some math-explanation behind it?

Yes, it is the correct behavior.
And the reason why repeating the same algorithm does not change the image is:
This algorithm simplify the image so it try to change the color of the pixel to the nearest color from a small colors set. So if the pixel color becomes equal to a Cor from the small colors set, then it is the nearest color to itself and will remain unchanged.

Related

Most prevalent color on a background by changing color space

I have a sheet of paper on another surface. I want to figure out when the paper ends and the surface begins.
I'm using this approach:
1. Convert image to pixel array
2. Pick 3 random 20x20 squares and frequency count the colors
3. The highest frequency is the background
However, the problem is that I get over 100 colors every time I do this on an actual image taken by the camera.
I think I can fix it by putting the image in 16 colors palette. Is there a way to do this change on a UIImage or CGImage?
Thanks
Your colours are probably very close together. How about calculating the distance (the cumulative absolute difference between red, green and blue values) from each sampled colour to a reference colour - just use the first one you sample as reference. If the distance is large, you have a different colour. If the distance is small, you have the same colour with minor variations in lighting or other camera artefacts.
Basically this is applying a filter in a very simple manner. It is up to you to decide how big the difference has to be for the colours to be considered different, but you could decide that by looking at the median difference of all the colours and grouping them into over/under samples.
You might also get good results from applying a Core Image filter to the sample images, such as CIColorClamp (CISpotColor looks better but is OS X only). if you can find a suitable filter there is a good chance it will be simpler and faster than doing it yourself.

which algorithm to choose for object detection?

I am interested in detecting single object more precisely a fire extinguisher which has no inter class variability (all fire extinguisher looks same). However, The application is supposedly realtime i.e a robot is exploring the environment and whenever it sees the object of interest it should be able to detect it and give pixel coordinates of it.
My question is which algorithm will be good choice for this task?
1. Is this a classification problem and should we use features(sift/surf etc) + bow +svm?
2. some other solution (no idea yet).
Any kind of input will be appreciated.
Thanks.
(P.S bear with me i am newbie to computer vision and stack over flow)
update1:
Height varies all are mounted on the wall but with different height. I tried with SIFT features and bow but it is expensive to extract bow descriptors in testing part. Moreover I have no idea how to locate the object(pixel coordinates) inside the image after its been classified positive.
update 2:
I finally used sift + bow + svm and am able to classify the object. But using this technique, i only get output interms of whether the object is present in the scene or not?
How can i detect the object i.e getting the bounding box or centre of the object. what is the compatible approach with the above method for achieving these results.
Thank you all.
I would suggest using color as the main feature to look for, and only try other features as needed. The fire extinguisher red is very distinctive, and should not occur too often elsewhere in an office environment. Other, more computationally expensive tests can then be performed only in regions of the right color.
Here is a good tutorial for color detection that also explains how to find good thresholds for your desired color.
I would suggest the following approach:
denoise your image with a median filter
convert the image to HSV format (Hue, Saturation, Value)
select pixels close to that particular shade of red with InRange()
Now you have a binary image image that contains only the pixels that are red.
count the number of red pixels with CountNonZero()
If that number is too small, abort
remove noise from the binary image by morphological opening / closing
find contours of all blobs in your picture with findContours or the CvBlob library
check if there are blobs of the correct width, correct height and correct width/height ratio
since your fire extinguishers are vertical cylinders, the width/height ratio will be constant from every angle. The width and height will of course vary somewhat with distance to the camera.
if the width and height do not match, abort
repeat these steps to find the black-colored part on the bottom of the extinguisher,
abort if there is no black region with correct width/height below the red region
(perhaps also repeat these steps for the metallic top and the yellow rectangle)
These tests should all be very fast. If they are too slow, you could reduce the resolution of your input images.
Depending on your environment, it is possible that this is already a robust enough test. If not, you can proceed with sift/surf feature matching, but only in a small region around the blobs with the correct color. You also do not necessarily have to do that for each frame, each n-th frame should be be enough for confirmation.
This is a old question .. but will still like to give my recommendation to use YOLO algorithm to solve this problem.
YOLO fits very well to this scenario.

Extracting images from a black background

I have a few objects in a black background.I would like to threshold the image and transform the objects in 1 and the black background into 0.
I am not sure how to choose my threshold to isolate the black background.
You can do this simply by the following step.
Load your image.
Convert to gray-scale.
Apply binary threshold which will create the result as your requirement.
Here you can see a good explanation about Basic Thresholding Operations using OpenCV with example.
One of the simplest thing to do is using the OpenCV's threshold function on the whole image and let the threshold value be choosen automatically by means of the Otsu's algorithm (the type argument of the threshold function should be ORed with the constant THRESH_OTSU).
Otsu's original work is: OTSU, Nobuyuki. A threshold selection method from gray-level histograms. Automatica, 1975, 11.285-296: 23-27.
This approach may work very well or it may fail miserably... it depends, as always, on your images.

uneven illuminated images

How to get rid of uneven illumination from images, that contain text data, usually printed but may be handwritten? It can have some spots of lights because the light reflected while making picture.
I've seen the Halcon program's segment_characters function that is doing this work perfectly,
but it is not open source.
I wish to convert an image to the image that has a constant illumination at background and more dark colored regions of text. So that binarization will be easy and without noise.
The text is assumed to be dark colored than it's background.
Any ideas?
Strictly speaking, assuming you have access to the image's pixels (you can search online for how to accomplish this in your programming language as the topic is abundantly available), the exercise involves going over the pixels once to determine a "darkness threshold". In order to do this you convert each pixel from RGB to HSL in order to get the lightness level component for each pixel. During this process you calculate an average lightness for the whole image which you can use as your "darkness threshold"
Once you have the image average lightness level, you can go over the image pixels once more and if a pixel is less than the darkness threshold, set it's color to full white RGB(255,255,255), otherwise, set it's color to full black RGB (0,0,0). This will give you a binary image with in which the text should be black - the rest should be white.
Of course, the key is in finding the appropriate darkness threshold - so if the average method doesn't give you good results you may have to come up with a different method to augment that step. Such a method could involve separating the image in the primary channels Red, Green, Blue and computing the darkness threshold for each channel separately and then using the aggressive threshold of the three..
And lastly, a better approach may be to compute the light levels distribution - as opposed to simply the average - and then from that, the range around the maximum is what you want to keep. Again, go over each pixel and if it's lightness fits the band make it black, otherwise, make it white.
EDIT
For further reading about HSL I recommend starting with the Wiky entry on HSL and HSV Color spaces.
Have you tried using morphological techniques? Closure-by-reconstruction (as presented in Gonzalez, Woods and Eddins) can be used to create a grayscale representation of background illumination levels. You can more-or-less standardize the effective illumination by:
1) Calculating the mean intensity of all the pixels in the image
2) Using closure-by-reconstruction to estimate background illumination levels
3) Subtract the output of (2) from the original image
4) Adding the mean intensity from (1) to every pixel in the output of (3).
Basically what closure-by-reconstruction does is remove all image features that are smaller than a certain size, erasing the "foreground" (the text you want to capture) and leaving only the "background" (illumination levels) behind. Subtracting the result from the original image leaves behind only small-scale deviations (the text). Adding the original average intensity to those deviations is simply to make the text readable, so that the resulting picture looks like a light-normalized version of the original image.
Use Local-Thresholding instead of the global thresholding algorithm.
Divide your image(grayscale) in to a grid of smaller images (say 50x50 px) and apply the thresholding algorithm on each individual image.
If the background features are generally larger than the letters, you can try to estimate and subsequently remove the background.
There are many ways to do that, a very simple one would be to run a median filter on your image. You want the filter window to be large enough that text inside the window rarely makes up more than a third of the pixels, but small enough that there are several windows that fit into the bright spots. This filter should result in an image without text, but with background only. Subtract that from the original, and you should have an image that can be segmented with a global threshold.
Note that if the bright spots are much smaller than the text, you do the inverse: choose the filter window such that it removes the light only.
The first thing you need to try and do it change the lighting, use a dome light or some other light that will give you a more diffuse and even light.
If that's not possible, you can try some of the ideas in this question or this one. You want to implement some type of "adaptive threshold", this will apply a local threshold to individual parts of the image so that the change in contrast won't be as noticable.
There is also a simple but effective method explained here. The simple outline of the alrithm is the following:
Split the image up into NxN regions or neighbourhoods
Calculate the mean or median pixel value for the neighbourhood
Threshold the region based on the value calculated in 2) or the value from 2) minus C (where C is a chosen constant)
It seems like what you're trying to do is improve local contrast while attenuating larger scale lighting variations. I'll agree with other posters that optimizing the image through better lighting should always be the first move.
After that, here are two tricks.
1) Use smooth_image() operator to convolve a gaussian on your original image. Use a relaitively large kernel, like 20-50px. Then subtract this blurred image from your original image. Apply scale and offset within sub_image() operator, or use equ_histo() to equalize histogram.
This basically subtracts the low spatial frequency information from the original, leaving the higher frequency information intact.
2) You could try highpass_image() operator, or one of the laplacian operators to extract a gradiant image.

Adaptive threshold Binarization's bad effects

I implemented some adaptive binarization methods, they use a small window and at each pixel the threshold value is calculated. There are problems with these methods:
If we select the window size too small we will get this effect (I think the reason is because of window size is small)
(source: piccy.info)
At the left upper corner there is an original image, right upper corner - global threshold result. Bottom left - example of dividing image to some parts (but I am talking about analyzing image's pixel small surrounding, for example window of size 10X10).
So you can see the result of such algorithms at the bottom right picture, we got a black area, but it must be white.
Does anybody know how to improve an algorithm to solve this problem?
There shpuld be quite a lot of research going on in this area, but unfortunately I have no good links to give.
An idea, which might work but I have not tested, is to try to estimate the lighting variations and then remove that before thresholding (which is a better term than "binarization").
The problem is then moved from adaptive thresholding to finding a good lighting model.
If you know anything about the light sources then you could of course build a model from that.
Otherwise a quick hack that might work is to apply a really heavy low pass filter to your image (blur it) and then use that as your lighting model. Then create a difference image between the original and the blurred version, and threshold that.
EDIT: After quick testing, it appears that my "quick hack" is not really going to work at all. After thinking about it I am not very surprised either :)
I = someImage
Ib = blur(I, 'a lot!')
Idiff = I - Idiff
It = threshold(Idiff, 'some global threshold')
EDIT 2
Got one other idea which could work depending on how your images are generated.
Try estimating the lighting model from the first few rows in the image:
Take the first N rows in the image
Create a mean row from the N collected rows. You know have one row as your background model.
For each row in the image subtract the background model row (the mean row).
Threshold the resulting image.
Unfortunately I am at home without any good tools to test this.
It looks like you're doing adaptive thresholding wrong. Your images look as if you divided your image into small blocks, calculated a threshold for each block and applied that threshold to the whole block. That would explain the "box" artifacts. Usually, adaptive thresholding means finding a threshold for each pixel separately, with a separate window centered around the pixel.
Another suggestion would be to build a global model for your lighting: In your sample image, I'm pretty sure you could fit a plane (in X/Y/Brightness space) to the image using least-squares, then separate the pixels into pixels brighter (foreground) and darker than that plane (background). You can then fit separate planes to the background and foreground pixels, threshold using the mean between these planes again and improve the segmentation iteratively. How well that would work in practice depends on how well your lightning can be modeled with a linear model.
If the actual objects you try to segment are "thinner" (you said something about barcodes in a comment), you could try a simple opening/closing operation the get a lighting model. (i.e. close the image to remove the foreground pixels, then use [closed image+X] as threshold).
Or, you could try mean-shift filtering to get the foreground and background pixels to the same brightness. (Personally, I'd try that one first)
You have very non-uniform illumination and fairly large object (thus, no universal easy way to extract the background and correct the non-uniformity). This basically means you can not use global thresholding at all, you need adaptive thresholding.
You want to try Niblack binarization. Matlab code is available here
http://www.uio.no/studier/emner/matnat/ifi/INF3300/h06/undervisningsmateriale/week-36-2006-solution.pdf (page 4).
There are two parameters you'll have to tune by hand: window size (N in the above code) and weight.
Try to apply a local adaptive threshold using this procedure:
convolve the image with a mean or median filter
subtract the original image from the convolved one
threshold the difference image
The local adaptive threshold method selects an individual threshold for each pixel.
I'm using this approach extensively and it's working fine with images having non uniform background.

Resources