Find the Missing no from an array the efficient way - ios

I am trying to find an efficient way to solve the find a missing number from an array. I implemented the following way it's O(n). Please write any codes that efficiently solves this, just for learning purpose.
func findMissingNo(arrA: [Int]) -> [Int] {
let firstIndex = arrA.first ?? 0
let lastIndex = arrA.last ?? 0
let rslt = Array(firstIndex...lastIndex)
let missingNoArray = rslt.filter{ !arrA.contains($0)}
return missingNoArray
}
findMissingNo(arrA: [11,12,14,15,16,18]) // Prints [13, 17] by looping 9 times

Quickly written and tested (in terms of times performances against your code, but not in term of possible edges cases/mistakes, for instance, if array is 0...10, it won't work, but I'll let you work on the edges cases, since I focused mainly on the main cases, cases which might be covered during an edit and the end of the question)
Your current code:
func findMissingNo(arrA: [Int]) -> [Int] {
let firstIndex = arrA.first ?? 0
let lastIndex = arrA.last ?? 0
let rslt = Array(firstIndex...lastIndex)
let missingNoArray = rslt.filter{ !arrA.contains($0)}
return missingNoArray
}
let numberArray = [11,12,14,15,18]
let missing1 = findMissingNo(arrA: numberArray)
print("Missing1: \(missing1)")
My attempt:
func findMissingNo2(arrA: [Int]) -> [Int] {
var missingNumbers: [Int] = []
guard arrA.count > 2 else { return missingNumbers }
for i in 0...arrA.count-2 {
var current = arrA[i]
let next = arrA[i+1]
if next != current + 1 {
current += 1
while current != next {
missingNumbers.append(current)
current += 1
}
}
}
return missingNumbers
}
let missing2 = findMissingNo2(arrA: numberArray)
print("Missing1: \(missing2)")
Creating a big batch:
var array = Array(0...1000)
for _ in 0...10 {
if let index = array.indices.randomElement() {
let value = array.remove(at: index)
print("removed: \(value)") //To check just in case that's the good value returned by the methods
}
}
Testing:
let date1 = Date()
for _ in 0...100 {
let missing = findMissingNo(arrA: array)
print(missing)
}
print(Date().timeIntervalSince(date1)) //18.617565035820007
let date2 = Date()
for _ in 0...100 {
let missing = findMissingNo2(arrA: array)
print(missing)
}
print(Date().timeIntervalSince(date2)) //0.09566605091094971
print("---End")
print("")
For the time, I got: 18.857954025268555 vs 0.09159696102142334, a big factor difference (~200 times).
Why is there such a big difference?
Because of
let missingNoArray = rslt.filter{ !arrA.contains($0)}
It means:
for each number in result, check if arrayA contains that number.
->
for each number in result, for each number in arrayA (with a stop condition, so it's not a full iteration, but "almost" in term of complexity) check if there is a match...
Here there is a "double" (which is in fact not double, but n?) iteration that you missed.
I tested first with bigger value (array from "0 to 100000"), but it was taking too much time, with that "low number of values", the difference can already be seen.
Instead, you could use a Set:
let missingNoArray = Array(Set(rslt).subtracting(Set(arrA))).sorted()
It's faster than you method in my tests, (double my solution (0.21 ~ 0.22) in time performances), but still much faster than yours.
I added the sorted(), which may or may not be important in your solution, but will add time consumption since Set aren't ordered.
For the edges cases (ie: [3], [3, 4], [3, 8])
guard arrA.count > 2 else { return missingNumbers }
==>
guard !arrA.isEmpty else { return [] }
guard arrA.count > 2 else {
if arrA[0] + 1 >= arrA[1] {
return []
} else {
return Array((arrA[0] + 1)...arrA[1]).dropLast() //Because last will be arrA[1] which is present)
}
}

Related

Tracking specific data in string using Swift

I'm still new to coding in general, and I'm running into an issue with a Swift exercise.
How do I track the number of times 1 (var numberOfSteps) and the number of times 2 (var numberOfHeartBeats) appears in the string "12221231221"?
I'm given the following hint but not sure how the for-in loop applies:
let activityData = "12221231221"
var numberOfSteps = 0
var numberOfHeartBeats = 0
for character in activityData{
print(character)
}
In the loop, you can check what the current characters is, then increment the variable accordingly:
let activityData = "12221231221"
var numberOfSteps = 0
var numberOfHeartBeats = 0
for character in activityData{
if character == "1" {
numberOfSteps += 1
} else if character == "2" {
numberOfHeartBeats += 1
}
}
Here is another more functional way of doing this:
let dict = Dictionary(grouping: activityData, by: { $0 }).mapValues { $0.count }
dict["1"] is numberOfSteps and dict["2"] is numberOfHeartBeats.
If you want to use a for loop you can do
let activityData = "12221231221"
var numberOfSteps = 0
var numberOfHeartBeats = 0
for character in activityData{
switch character {
case "1":
numberOfSteps += 1
case "2":
numberOfHeartBeats += 1
default:
break
}
}
print("Number of steps: \(numberOfSteps), number of hartbeats: \(numberOfHeartBeats)")
A more condensed solution without a loop
print("Number of steps: \( activityData.filter( {$0 == "1"} ).count), number of hartbeats: \( activityData.filter( {$0 == "2"} ).count)")
You can do this in simple way like this:-
let occurrencesOne = text.characters.filter { $0 == "1" }.count
let occurrencesTwo = text.characters.filter { $0 == "2" }.count
Another solution is to use reduce, this is kinda equivalent to manually looping over the string, but will less and mode concise code, and without the disadvantage of creating intermediary structures (like arrays of dictionaries), which for large inputs can be problematic memory-wise:
let activityData = "12221231221"
let numberOfSteps = activityData.reduce(0) { $1 == "1" ? $0 + 1 : $0 }
let numberOfHeartBeats = activityData.reduce(0) { $1 == "2" ? $0 + 1 : $0 }
print(numberOfSteps, numberOfHeartBeats) // 4, 6
One step further to reduce the duplication would be to add a function to compute the reduce second parameter:
func countIf<T: Equatable>(_ search: T) -> (Int, T) -> Int {
return { $1 == search ? $0 + 1 : $0 }
}
let activityData = "12221231221"
let numberOfSteps: Int = activityData.reduce(0, countIf("1"))
let numberOfHeartBeats = activityData.reduce(0, countIf("2"))
print(numberOfSteps, numberOfHeartBeats)

Limit the results of a Swift array filter to X for performance

I have about 2000 elements in my array, and when it is filtered, I would like to end the filtering as soon as I have 5 elements in my filtered array.
Currently it is:
providerArray.filter({($0.lowercased().range(of:((row.value as? String)?.lowercased())!) != nil)})
which can return up to 2000 results which is a waste of processing, and time.
To be more clear, I need a solution that is equivalent to limiting the filter results like I can with coreData fetches [request setFetchLimit:5];
The fastest solution in terms of execution time seems to be an
explicit loop which adds matching elements until the limit is reached:
extension Sequence {
public func filter(where isIncluded: (Iterator.Element) -> Bool, limit: Int) -> [Iterator.Element] {
var result : [Iterator.Element] = []
result.reserveCapacity(limit)
var count = 0
var it = makeIterator()
// While limit not reached and there are more elements ...
while count < limit, let element = it.next() {
if isIncluded(element) {
result.append(element)
count += 1
}
}
return result
}
}
Example usage:
let numbers = Array(0 ..< 2000)
let result = numbers.filter(where: { $0 % 3 == 0 }, limit: 5)
print(result) // [0, 3, 6, 9, 12]
You can use .lazy too boost the performance a bit:
let numbers: [Int] = Array(0 ..< 2000)
let result: AnySequence = numbers
.lazy
.filter {
print("Calling filter for: \($0)")
return ($0 % 3) == 0
}
.prefix(5)
print(Array(result))
This will call the filter function only for the first 15 values (until it finds 5 that pass the filter).
Now you can concentrate on boosting the performance of the filter itself. E.g. by caching values. You don't have to do this but if some values keep repeating, it can boost the performance a lot.
let numbers: [Int] = Array(0 ..< 2000)
var filterCache: [Int: Bool] = [:]
let result: AnySequence = numbers
.lazy
.filter {
if let cachedResult = filterCache[$0] {
return cachedResult
}
print("Calling filter for: \($0)")
let result = (($0 % 3) == 0)
filterCache[$0] = result
return result
}
.prefix(5)
print(Array(result))
You can apply this method directly to your function.
Also note that to boost performance, you should either:
save ((row.value as? String)?.lowercased())! into a local variable because it is executed multiple times
simplify the expression using options:
let result: AnySequence = providerArray
.lazy
.filter {
$0.range(of: row.value as! String, options: [.caseInsensitive]) != nil
}
.prefix(5)

Finding a value in an array of arrays (similar to VLOOKUP function in Excel) in Swift

I am quite new to Swift 3 and to programming languages in general. I have the following arrays inside an array and a variable income:
let testArray: [[Double]] = [
[0,0],
[1000,20.5],
[3000,21],
[4000,22.5],
]
var income: Double = 3500
What I want to do is something similar to the VLOOKUP function in Excel: I want to find in the first column of the arrays (i.e. 0, 1000, 3000, 4000) a number which is equal or immediately smaller than my variable. In this case, as income = 3500, the program should return 3000. I tried using filter() but I don't know how to work with the arrays inside the array. Any help appreciated.
You can proceed as follows.
Get the first column of the array:
let firstColumn = testArray.map { $0[0] }
print(firstColumn) // [0.0, 1000.0, 3000.0, 4000.0]
Restrict to those elements which are less than or equal to the
given amount:
let filtered = firstColumn.filter { $0 <= income }
print(filtered) // [0.0, 1000.0, 3000.0]
Get the maximal element of the filtered array. If the elements are
sorted in increasing order then you can use last instead of max():
let result = filtered.max()!
// Or: let result = filtered.last!
print(result) // 3000.0
Putting it all together:
let result = testArray.map { $0[0] }.filter { $0 <= income }.max()!
print(result) // 3000.0
A possible optimization is to combine map and filter into
flatMap:
let result = testArray.flatMap { $0[0] <= income ? $0[0] : nil }.max()!
print(result) // 3000.0
This code assumes that there is at least one matching element,
otherwise last! or max()! would crash. If that is not guaranteed:
if let result = testArray.flatMap( { $0[0] <= income ? $0[0] : nil }).max() {
print(result) // 3000.0
} else {
print("no result")
}
Or provide a default value (0.0 in this example):
let result = testArray.flatMap( { $0[0] <= income ? $0[0] : nil }).max() ?? 0.0
print(result) // 3000.0
Something like this:
let testArray: [[Double]] = [
[0,0],
[1000,20.5],
[3000,21],
[3500,22.5],
[3300,21],
]
let income: Double = 3500
var closest = testArray[0][0]
var closestDif = closest - income
for innerArray in testArray {
let value = innerArray[0]
let thisDif = value - income
guard thisDif <= 0 else {
continue
}
if closestDif < thisDif {
closestDif = thisDif
closest = value
guard closestDif != 0 else {
break
}
}
}
print(closest)

Calculate all permutations of a string in Swift

For the string "ABC" the code snippet below calculates 5 of the 6 total permutations. My strategy was to insert each character at each index possible index. But the function never gets "CBA" as a possible permutation. What am I missing?
var permutationArray:[String] = [];
let string: String = "ABC"
func permute(input: String) -> Array<String>
{
var permutations: Array<String> = []
/* Convert the input string into characters */
var inputArray: Array<String>
inputArray = input.characters.map { String($0) }
print(inputArray)
/* For each character in the input string... */
for var i = 0; i < inputArray.count; i++
{
/* Insert it at every index */
let characterInArray: String = inputArray[i]
var inputArrayCopy: Array<String> = []
for var y = 0; y < inputArray.count; y++
{
inputArrayCopy = inputArray
inputArrayCopy.removeAtIndex(i)
inputArrayCopy.insert(characterInArray, atIndex:y)
let joiner = ""
let permutation = inputArrayCopy.joinWithSeparator(joiner)
if !permutations.contains(permutation) {
permutations.insert(permutation, atIndex: 0)
}
}
}
return permutations
}
var permutations = permute(string)
print(permutations)
While Stefan and Matt make a good point about using Heap's algorithm, I think you have an important question about why your code doesn't work and how you would debug that.
In this case, the algorithm is simply incorrect, and the best way to discover that is with pencil and paper IMO. What you are doing is picking each element, removing it from the array, and then injecting it into each possible location. Your code does what you have asked it to do. But it's not possible to get to "CBA" that way. You're only moving one element at a time, but "CBA" has two elements out of order. If you expanded to ABCD, you'd find many more missing permutations (it only generates 10 of the 24).
While Heap's algorithm is nicely efficient, the deeper point is that it walks through the entire array and swaps every possible pair, rather than just moving a single element through the array. Any algorithm you choose must have that property.
And just to throw my hat into the ring, I'd expand on Matt's implementation this way:
// Takes any collection of T and returns an array of permutations
func permute<C: Collection>(items: C) -> [[C.Iterator.Element]] {
var scratch = Array(items) // This is a scratch space for Heap's algorithm
var result: [[C.Iterator.Element]] = [] // This will accumulate our result
// Heap's algorithm
func heap(_ n: Int) {
if n == 1 {
result.append(scratch)
return
}
for i in 0..<n-1 {
heap(n-1)
let j = (n%2 == 1) ? 0 : i
scratch.swapAt(j, n-1)
}
heap(n-1)
}
// Let's get started
heap(scratch.count)
// And return the result we built up
return result
}
// We could make an overload for permute() that handles strings if we wanted
// But it's often good to be very explicit with strings, and make it clear
// that we're permuting Characters rather than something else.
let string = "ABCD"
let perms = permute(string.characters) // Get the character permutations
let permStrings = perms.map() { String($0) } // Turn them back into strings
print(permStrings) // output if you like
Here's an expression of Heap's (Sedgewick's?) algorithm in Swift. It is efficient because the array is passed by reference instead of being passed by value (though of course this means you must be prepared to have the array tampered with). Swapping is efficiently expressed through the use of the built-in swapAt(_:_:) function:
func permutations(_ n:Int, _ a: inout Array<Character>) {
if n == 1 {print(a); return}
for i in 0..<n-1 {
permutations(n-1,&a)
a.swapAt(n-1, (n%2 == 1) ? 0 : i)
}
permutations(n-1,&a)
}
Let's try it:
var arr = Array("ABC".characters)
permutations(arr.count,&arr)
Output:
["A", "B", "C"]
["B", "A", "C"]
["C", "A", "B"]
["A", "C", "B"]
["B", "C", "A"]
["C", "B", "A"]
If what you wanted to do with each permutation was not merely to print it, replace print(a) with something else. For example, you could append each permutation to an array, combine the array of characters into a string, whatever.
A very straightforward approach as also suggested in Swift coding challenges.
func permutation(string: String, current: String = "") {
let length = string.characters.count
let strArray = Array(string.characters)
if (length == 0) {
// there's nothing left to re-arrange; print the result
print(current)
print("******")
} else {
print(current)
// loop through every character
for i in 0 ..< length {
// get the letters before me
let left = String(strArray[0 ..< i])
// get the letters after me
let right = String(strArray[i+1 ..< length])
// put those two together and carry on
permutation(string: left + right, current: current +
String(strArray[i]))
}
}
}
Apple today released an Algorithms package available at:
https://github.com/apple/swift-algorithms
This package includes a permutations function that works like so:
let string = "abc"
string.permutations()
/*
["a", "b", "c"]
["a", "c", "b"]
["b", "a", "c"]
["b", "c", "a"]
["c", "a", "b"]
["c", "b", "a"]
*/
func generate(n: Int, var a: [String]){
if n == 1 {
print(a.joinWithSeparator(""))
} else {
for var i = 0; i < n - 1; i++ {
generate(n - 1, a: a)
if n % 2 == 0 {
let temp = a[i]
a[i] = a[n-1]
a[n-1] = temp
}
else {
let temp = a[0]
a[0] = a[n-1]
a[n-1] = temp
}
}
generate(n - 1, a: a)
}
}
func testExample() {
var str = "123456"
var strArray = str.characters.map { String($0) }
generate(str.characters.count, a: strArray)
}
Don't reinvent the wheel. Here's a simple port of Heap's algorithm.
Here is my solution.
import Foundation
class Permutator {
class func permutation(_ str: String) -> Set<String> {
var set = Set<String>()
permutation(str, prefix: "", set: &set)
return set
}
private class func permutation(_ str: String, prefix: String, set: inout Set<String>) {
if str.characters.count == 0 {
set.insert(prefix)
}
for i in str.characters.indices {
let left = str.substring(to: i)
let right = str.substring(from: str.index(after: i))
let rem = left + right
permutation(rem, prefix: prefix + String(str[i]), set: &set)
}
}
}
let startTime = Date()
let permutation = Permutator.permutation("abcdefgh")
print("\(permutation) \n")
print("COMBINAISON: \(permutation.count)")
print("TIME: \(String(format: "%.3f", Date().timeIntervalSince(startTime)))s")
You can copy/paste it in a file and execute it with the command line swift binary.
For a permutation of 7 all unique characters, this algorithm take around 0,06 second to execute.
I was searching to solve the same problem, but I wanted a solution that worked with Generic data type, so I wrote one by looking at a scala code (http://vkostyukov.ru/posts/combinatorial-algorithms-in-scala/)
https://gist.github.com/psksvp/8fb5c6fbfd6a2207e95638db95f55ae1
/**
translate from Scala by psksvp#gmail.com
http://vkostyukov.ru/posts/combinatorial-algorithms-in-scala/
*/
extension Array
{
func combinations(_ n: Int) -> [[Element]]
{
guard self.count > 0 else {return [[Element]]()}
guard n <= self.count else {return [[Element]]()}
if 1 == n
{
return self.map {[$0]}
}
else
{
let head = self.first! // at this point head should be valid
let tail = Array(self.dropFirst())
let car = tail.combinations(n - 1).map {[head] + $0} // build first comb
let cdr = tail.combinations(n) // do the rest
return car + cdr
}
}
func variations(_ n:Int) -> [[Element]]
{
func mixone(_ i: Int, _ x: Element, _ ll: [Element]) -> [Element]
{
return Array( ll[0 ..< i] + ([x] + ll[i ..< ll.count]) )
}
func foldone(_ x: Element, _ ll: [Element]) -> [[Element]]
{
let r:[[Element]] = (1 ... ll.count).reduce([[x] + ll])
{
a, i in
[mixone(i, x, ll)] + a
}
return r
}
func mixmany(_ x: Element, _ ll: [[Element]]) -> [[Element]]
{
guard ll.count > 0 else {return [[Element]]()}
let head = ll.first!
let tail = Array<Array<Element>>(ll.dropFirst())
return foldone(x, head) + mixmany(x, tail)
}
guard self.count > 0 else {return [[Element]]()}
guard n <= self.count else {return [[Element]]()}
if 1 == n
{
return self.map {[$0]}
}
else
{
let head = self.first! // at this point head should be valid
let tail = Array(self.dropFirst())
return mixmany(head, tail.variations(n - 1)) + tail.variations(n)
}
}
var permutations: [[Element]]
{
variations(self.count)
}
}
print([1, 2, 3, 4].combinations(2))
print([1, 2, 3, 4].variations(2))
print([1, 2, 3, 4].permutations)
print(Array("ABCD").permutations)
100% working tested
func permute(strInput:String,l:Int,r:Int){
var inputCharacter = Array(strInput)
if ( l==r){
print(strInput)
}else{
for var i in l..<r{
// Swapping done
inputCharacter.swapAt(l, i);
// Recursion called
permute(strInput: String(inputCharacter), l: l+1, r: r);
//backtrack
inputCharacter.swapAt(l, i);
}
}
}
This way you can call method:
permute(strInput: "ABC", l: 0, r: 3)
Output:
ABC
ACB
BAC
BCA
CBA
CAB
You can use the functions of this framework to calculate permutations and combinations both with repetition and without repetition. You can investigate the source code and compare with your own.
https://github.com/amirrezaeghtedari/AECounting
This library calculates the results based on lexicographic order. For example the result of permutation 3 items out of 5 items are same as below:
let result = Permutation.permute(n: 5, r: 3)
//result
//[
// [1, 2, 3],
// [1, 2, 4],
// [1, 2, 5],
// ...,
// 5, 4, 3]
//].
You can easily assign your problem items to 1 to n numbers in the result array.
In case of your problem, you should call:
let result = Permutation.permute(n: 3, r: 3)
For those looking to calculate all permutations of an array:
func permutations<T>(_ arr: [T]) -> [[T]] {
if arr.count < 2 {
return [arr]
}
var ret: [[T]] = []
let rest = Array(arr[1...])
for p in permutations(rest) {
for i in 0...p.count {
ret.append(Array(p[0..<i]) + [arr[0]] + Array(p[i...]))
}
}
return ret
}
🚨 Update: just use array.permuations() as noted by #Caleb

Swift Anagram checker

I am attempting to build an anagram checker for swift. This is my code. In case you don't know an anagram checker checks if two strings have the same characters in them but, order does not matter.
func checkForAnagram(#firstString: String, #secondString: String) -> Bool {
var firstStringArray: [Character] = []
var secondStringArray: [Character] = []
/* if case matters delete the next four lines
and make sure your variables are not constants */
var first = firstString
var second = secondString
first = first.lowercaseString
second = second.lowercaseString
for charactersOne in first {
firstStringArray += [charactersOne]
}
for charactersTwo in second {
secondStringArray += [charactersTwo]
}
if firstStringArray.count != secondStringArray.count {
return false
} else {
for elements in firstStringArray {
if secondStringArray.contains(elements){
return true
} else {
return false
}
}
}
}
var a = "Hello"
var b = "oellh"
var c = "World"
checkForAnagram(firstString: a, secondString: b)
I am getting an error message of.
'[Character]' does not have a member 'contains'
The accepted answer is compact and elegant, but very inefficient if compared to other solutions.
I'll now propose and discuss the implementation of a few variants of anagram checker. To measure performance, I'll use the different variants to find the anagrams of a given word out of an array of 50,000+ words.
// Variant 1: Sorting of Character
// Measured time: 30.46 s
func anagramCheck1(a: String, b: String) -> Bool {
return a.characters.sorted() == b.characters.sorted()
}
This is essentially the solution of the accepted answer, written in Swift 3 syntax. It's very slow because Swift's String, unlike NSString, is based on Character, which handles Unicode characters properly.
A more efficient solution exploits the NSCountedSet class, which allows us to represent a string as a set of characters, each with its own count. Two strings are anagrams if they map to the same NSCountedSet.
Note: checking string lengths as a precondition makes the implementation always more efficient.
// Variant 2: NSCountedSet of Character
// Measured time: 4.81 s
func anagramCheck2(a: String, b: String) -> Bool {
guard a.characters.count == b.characters.count else { return false }
let aSet = NSCountedSet()
let bSet = NSCountedSet()
for c in a.characters {
aSet.add(c)
}
for c in b.characters {
bSet.add(c)
}
return aSet == bSet
}
Better but not excellent. Here, one of the "culprits" is the use of the native Swift Character type (from Swift's String). Moving back to good old Objective-C types (NSString and unichar) makes things more efficient.
// Variant 3: NSCountedSet of unichar
// Measured time: 1.31 s
func anagramCheck3(a: String, b: String) -> Bool {
let aString = a as NSString
let bString = b as NSString
let length = aString.length
guard length == bString.length else { return false }
let aSet = NSCountedSet()
let bSet = NSCountedSet()
for i in 0..<length {
aSet.add(aString.character(at: i))
bSet.add(bString.character(at: i))
}
return aSet == bSet
}
Using NSCountedSet is fine, but before we compare two NSCountedSet objects, we fully populate them. A useful alternative is to fully populate the NSCountedSet for only one of the two strings, and then, while we populate the NSCountedSet for the other string, we fail early if the other string contains a character that is not found in the NSCountedSet of the first string.
// Variant 4: NSCountedSet of unichar and early exit
// Measured time: 1.07 s
func anagramCheck4(a: String, b: String) -> Bool {
let aString = a as NSString
let bString = b as NSString
let length = aString.length
guard length == bString.length else { return false }
let aSet = NSCountedSet()
let bSet = NSCountedSet()
for i in 0..<length {
aSet.add(aString.character(at: i))
}
for i in 0..<length {
let c = bString.character(at: i)
if bSet.count(for: c) >= aSet.count(for: c) {
return false
}
bSet.add(c)
}
return true
}
This is about the best timing we are going to get (with Swift). However, for completeness, let me discuss one more variant of this kind.
The next alternative exploits a Swift Dictionary of type [unichar: Int] to store the number of repetitions for each character instead of NSCountedSet. It's slightly slower than the previous two variants, but we can reuse it later to obtain a faster implementation.
// Variant 5: counting repetitions with [unichar:Int]
// Measured time: 1.36
func anagramCheck5(a: String, b: String) -> Bool {
let aString = a as NSString
let bString = b as NSString
let length = aString.length
guard length == bString.length else { return false }
var aDic = [unichar:Int]()
var bDic = [unichar:Int]()
for i in 0..<length {
let c = aString.character(at: i)
aDic[c] = (aDic[c] ?? 0) + 1
}
for i in 0..<length {
let c = bString.character(at: i)
let count = (bDic[c] ?? 0) + 1
if count > aDic[c] ?? 0 {
return false
}
bDic[c] = count
}
return true
}
Note that a vanilla Objective-C implementation using NSCountedSet, corresponding to Variant 3, is faster than all the previous versions by a rather large margin.
// Variant 6: Objective-C and NSCountedSet
// Measured time: 0.65 s
- (BOOL)anagramChecker:(NSString *)a with:(NSString *)b {
if (a.length != b.length) {
return NO;
}
NSCountedSet *aSet = [[NSCountedSet alloc] init];
NSCountedSet *bSet = [[NSCountedSet alloc] init];
for (int i = 0; i < a.length; i++) {
[aSet addObject:#([a characterAtIndex:i])];
[bSet addObject:#([b characterAtIndex:i])];
}
return [aSet isEqual:bSet];
}
Another way we can improve upon the previous attempts is to observe that, if we need to find the anagram of a given word, we might as well consider that word as fixed, and thus we could build the corresponding structure (NSCountedSet, Dictionary, ...) for that word only once.
// Finding all the anagrams of word in words
// Variant 7: counting repetitions with [unichar:Int]
// Measured time: 0.58 s
func anagrams(word: String, from words: [String]) -> [String] {
let anagrammedWord = word as NSString
let length = anagrammedWord.length
var aDic = [unichar:Int]()
for i in 0..<length {
let c = anagrammedWord.character(at: i)
aDic[c] = (aDic[c] ?? 0) + 1
}
let foundWords = words.filter {
let string = $0 as NSString
guard length == string.length else { return false }
var bDic = [unichar:Int]()
for i in 0..<length {
let c = string.character(at: i)
let count = (bDic[c] ?? 0) + 1
if count > aDic[c] ?? 0 {
return false
}
bDic[c] = count
}
return true
}
return foundWords
}
Now, in the previous variant we have counted with a [unichar:Int] Dictionary. This proves slightly more efficient than using an NSCountedSet of unichar, either with early exit (0.60 s) or without (0.87 s).
You should try
func checkForAnagram(firstString firstString: String, secondString: String) -> Bool {
return firstString.lowercaseString.characters.sort() == secondString.lowercaseString.characters.sort()
}
func checkAnagrams(str1: String, str2: String) -> Bool {
guard str1.count == str2.count else { return false }
var dictionary = Dictionary<Character, Int>()
for index in 0..<str1.count {
let value1 = str1[str1.index(str1.startIndex, offsetBy: index)]
let value2 = str2[str2.index(str2.startIndex, offsetBy: index)]
dictionary[value1] = (dictionary[value1] ?? 0) + 1
dictionary[value2] = (dictionary[value2] ?? 0) - 1
}
return !dictionary.contains(where: {(_, value) in
return value != 0
})
}
Time complexity - O(n)
// Make sure name your variables correctly so you won't confuse
// Mutate the constants parameter, lowercase to handle capital letters and the sorted them to compare both. Finally check is there are equal return true or false.
func anagram(str1: String, srt2: String)->Bool{
let string1 = str1.lowercased().sorted()
let string2 = srt2.lowercased().sorted()
if string1 == string2 {
return true
}
return false
}
// This answer also would work
// Convert your parameters on Array, then sorted them and compare them
func ana(str1: String, str2: String)->Bool{
let a = Array(str1)
let b = Array(str2)
if a.sorted() == b.sorted() {
return true
}
return false
}
Don't forget whitespaces
func isAnagram(_ stringOne: String, stringTwo: String) -> Bool {
return stringOne.lowercased().sorted().filter { $0 != " "} stringTwo.lowercased().sorted().filter { $0 != " "}
}
Swift 4.1 Function will give you 3 questions answer for Anagram :-
1. Input Strings (a,b) are Anagram ? //Bool
2. If not an Anagram then number of count require to change Characters in strings(a,b) to make them anagram ? // Int
3. If not an Anagram then list of Characters needs to be change in strings(a,b) to make them anagram ? // [Character]
STEP 1:- Copy and Paste below function in to your required class:-
//MARK:- Anagram checker
func anagramChecker(a:String,b:String) -> (Bool,Int,[Character]) {
var aCharacters = Array(a)
var bCharacters = Array(b)
var count = 0
var isAnagram = true
var replacementRequiredWords:[Character] = [Character]()
if aCharacters.count == bCharacters.count {
let listA = aCharacters.filter { !bCharacters.contains($0) }
for i in 0 ..< listA.count {
if !replacementRequiredWords.contains(listA[i]) {
count = count + 1
replacementRequiredWords.append(listA[i])
isAnagram = false
}
}
let listB = bCharacters.filter { !aCharacters.contains($0) }
for i in 0 ..< listB.count {
if !replacementRequiredWords.contains(listB[i]) {
count = count + 1
replacementRequiredWords.append(listB[i])
isAnagram = false
}
}
}else{
//cant be an anagram
count = -1
}
return (isAnagram,count,replacementRequiredWords)
}
STEP 2 :- Make two Input Strings for test
// Input Strings
var a = "aeb"
var b = "abs"
STEP 3:- Print results :-
print("isAnagram : \(isAnagram(a: a, b: b).0)")
print("number of count require to change strings in anagram : \(isAnagram(a: a, b: b).1)")//-1 will come in case of cant be a Anagram
print("list of Characters needs to be change : \(isAnagram(a: a, b: b).2)")
Results of above exercise:-
isAnagram : false
number of count require to change strings in anagram : 2
list of Characters needs to be change : ["e", "s"]
Hope this 10 minutes exercise will give some support to my Swift
family for solving Anagram related problems easily. :)
We can use dictionary to construct a new data structure container. Then compare the value by key/character of the string.
func anagram(str1: String, str2 : String) -> Bool {
var dict1 = [Character: Int]()
var dict2 = [Character:Int]()
for i in str1 {
if let count = dict1[i] {
dict1[i] = count + 1
} else {
dict1[i] = 1
}
}
for j in str2 {
if let count = dict2[j] {
dict2[j] = count + 1
} else {
dict2[j] = 1
}
}
return dict1 == dict2 ? true : false
}
// input -> "anna", "aann"
// The count will look like:
// ["a": 2, "n": 2] & ["a": 2, "n": 2]
// then return true
Another easy that I just realise doing an Anagram function in Swift 5.X
func checkForAnagram(firstString firstString: String, secondString: String) -> Bool {
return !firstString.isEmpty && firstString.sorted() == secondString.sorted()
}
class Solution {
func isAnagram(_ s: String, _ t: String) -> Bool {
guard s.count == t.count else { return false }
let dictS = s.reduce(into: [Character: Int]()) { $0[$1, default: 0] += 1 }
let dictT = t.reduce(into: [Character: Int]()) { $0[$1, default: 0] += 1 }
for letter in s {
if let count = dictS[letter] {
guard count == dictT[letter] else { return false }
}
}
return true
}
}
Check two strings are anagram using inout method in Swift
func checkAnagramString(str1: inout String, str2: inout String)-> Bool{
var result:Bool = false
str1 = str1.lowercased().trimmingCharacters(in: .whitespace)
str2 = str2.lowercased().trimmingCharacters(in: .whitespaces)
if (str1.count != str2.count) {
return result
}
for c in str1 {
if str2.contains(c){
result = true
}
else{
result = false
return result
}
}
return result
}
Call function to check strings are anagram or not
var str1 = "tommarvoloriddle"
var str2 = "iamlordvoldemort"
print(checkAnagramString(str1: &str1, str2: &str2)) //Output = true.
func isAnagram(word1: String, word2: String) -> Bool {
let set1 = Set(word1)
let set2 = Set(word2)
return set1 == set2
}
or
func isAnagram(word1: String,word2: String) -> Bool {
return word1.lowercased().sorted() == word2.lowercased().sorted()
}

Resources