I am new to launching ES for the production environment. I want to create production-ready ElasticSearch clusters having master nodes and data and backup nodes and etc. I read tutorials on the internet regarding this matter including the official document but I cannot get my head around the topic in the official document it's running multiple clusters under one machine what if that machine goes down for some reason? where are the master nodes playing in that scenario? where are the backup nodes? to protect against data loss?
I want to know if there are any straightforward solutions that I can use for deploying the ES on multiple machines serving the same purpose (for one project with specific data types) that can be easily distributed and fault-tolerant?
Running multiple containers on a single host makes sense if you have a lot of resources on a given host that you want to partition up and use efficiently. then you can have multiple hosts with multiple Elasticsearch containers forming a cluster
If you do that, look at using allocation awareness to make sure shards are adequately balanced so that the loss of a single host will mean you maintain your data
Related
There are a lot of articles online about running an Elasticsearch multi-node cluster using docker-compose, including the official documentation for Elasticsearch 8.0. However, I cannot find a reason why you would set up multiple nodes on the same docker host. Is this the recommended setup for a production environment? Or is it an example of theory in practice?
You shouldn't consider this a production environment. The guides are examples, often for lab environments, and testing scenarios with the application. I would not consider them production ready, and compose is often not considered a production grade tool since everything it does is to a single docker node, where in production you typically want multiple nodes spread across multiple availability zones.
Since one ES node heap memory should never get more than half the available memory (and less than ~30.5GB), one reason it makes sense to have several nodes on a given host is when you have hosts with ample memory (say 128GB+). In that case you could run 2 ES nodes (with 64GB of memory each, 30.5GB heap and the rest for Lucene) on the same host by correctly constraining each Docker container.
Note that the above is not related to Docker, you can always configure several nodes per host, whether Docker or not.
Regarding production and given the fact that 2+ nodes would run on the same host, if you lose that host, you lose two nodes, which is not good. However, depending on how many hosts you have, it might be a lesser problem, if and only if, each host is in a different availability zone and you have the appropriate cluster/shard allocation awareness settings configured, which would ensure that your data is redundantly copied in 2+ availability zones. In this case, losing a host (2 nodes) would still keep your cluster running, although in degraded mode.
It's worth noting that Elastic Cloud Enterprise (which powers Elastic Cloud) is designed to run several nodes per hosts depending on the sizing of the nodes and the available hardware. You can find more info on hardware pre-requisites as well as how medium and large scale deployments make use of one or more large 256GB hosts per availability zones.
I am trying to build multiple API for which I want to store the data with Cassandra. I am designing it as if I would have multiple hosts but, the hosts I envisioned would be of two types: trusted and non-trusted.
Because of that I have certain data which I don't want to end up replicated on a group of the hosts but the rest of the data to be replicated everywhere.
I considered simply making a node for public data and one for protected data but that would require the trusted hosts to run two nodes and it would also complicate the way the API interacts with the data.
I am building it in a docker container also, I expect that there will be frequent node creation/destruction both trusted and not trusted.
I want to know if it is possible to use keyspaces in order to achieve my required replication strategy.
You could have two Datacenters one having your public data and the other the private data. You can configure keyspace replication to only replicate that data to one (or both) DCs. See the docs on replication for NetworkTopologyStrategy
However there are security concerns here since all the nodes need to be able to reach one another via the gossip protocol and also your client applications might need to contact both DCs for different reads and writes.
I would suggest you look into configuring security perhaps SSL for starters and then perhaps internal authentication. Note Kerberos is also supported but this might be too complex for what you need at least now.
You may also consider taking a look at the firewall docs to see what ports are used between nodes and from clients so you know which ones to lock down.
Finally as the above poster mentions, the destruction / creation of nodes too often is not good practice. Cassandra is designed to be able to grow / shrink your cluster while running, but it can be a costly operation as it involves not only streaming data from / to the node being removed / added but also other nodes shuffling around token ranges to rebalance.
You can run nodes in docker containers, however note you need to take care not to do things like several containers all accessing the same physical resources. Cassandra is quite sensitive to io latency for example, several containers sharing the same physical disk might render performance problems.
In short: no you can't.
All nodes in a cassandra cluster from a complete ring where your data will be distributed with your selected partitioner.
You can have multiple keyspaces and authentication and authorziation within cassandra and split your trusted and untrusted data into different keyspaces. Or you an go with two clusters for splitting your data.
From my experience you also should not try to create and destroy cassandra nodes as your usual daily business. Adding and removing nodes is costly and needs to be monitored as your cluster needs to maintain repliaction and so on. So it might be good to split cassandra clusters from your api nodes.
I'm trying to understand the benefits of Docker better and I am not really understanding how it would work in production.
Let's say I have a web frontend, a rest api backend and a db. That makes 3 containers.
Let's say that I want 3 of the front end, 5 of the backend and 7 of the db. (Minor question: Does it ever make sense to have less dbs than backend servers?)
Now, given the above scenario, if I package them all on the same host then I gain the benefit of efficiently using the resources of the host, but then I am DOA when that machine fails or has a network partition.
If I separate them into 1 full application (ie 1 FE, 1 BE & 1 DB) per host, and put extra containers on their own host, I get some advantages of using resources efficiently, but it seems to me that I still lose significantly when I have a network partition since it will take down multiple services.
Hence I'm almost leaning to the conclusion that I should be putting in 1 container per host, but then that means I am using my resources pretty inefficiently and then what are the benefits of containers in production? I mean, an OS might be an extra couple gigs per machine in storage size, but most cloud providers give you a minimum of 10 gigs storage. And let's face it, a rest api backend or a web front end is not gonna even come close to the 10 gigs...even including the OS.
So, after all that, I'm trying to figure out if I'm missing the point of containers? Are the benefits of keeping all containers of an application on 1 host, mostly tied to testing and development benefits?
I know there are benefits from moving containers amongst different providers/machines easily, but for the most part, I don't see that as a huge gain personally since that was doable with images...
Are there any other benefits for containers in production that I am missing? Or are the main benefits for testing and development? (Am I thinking about containers in production wrong)?
Note: The question is very broad and could fill an entire book but I'll shed some light.
Benefits of containers
The exciting part about containers is not about their use on a single host, but their use across hosts connected on a large cluster. Do not look at your machines as independent docker hosts, but as a pool of resource to host your containers.
Containers alone are not ground-breaking (ie. Docker's CTO stating at the last DockerCon that "nobody cares about containers"), but coupled to state of the art schedulers and container orchestration frameworks, they become a very powerful abstraction to handle production-grade software.
As to the argument that it also applies to Virtual Machines, yes it does, but containers have some technical advantage (See: How is Docker different from a normal virtual machine) over VMs that makes them convenient to use.
On a Single host
On a single host, the benefits you can get from containers are (amongst many others):
Use as a development environment mimicking the behavior on a real production cluster.
Reproducible builds independent of the host (convenient for sharing)
Testing new software without bloating your machine with packages you won't use daily.
Extending from a single host to a pool of machines (cluster)
When time comes to manage a production cluster, there are two approaches:
Create a couple of docker hosts and run/connect containers together "manually" through scripts or using solutions like docker-compose. Monitoring the lifetime of your services/containers is at your charge, and you should be prepared to handle service downtime.
Let a container orchestrator deal with everything and monitor the lifetime of your services to better cope with failures.
There are plenty of container orchestrators: Kubernetes, Swarm, Mesos, Nomad, Cloud Foundry, and probably many others. They power many large-scale companies and infrastructures, like Ebay, so they sure found a benefit in using these.
Pick the right replication strategy
A container is better used as a disposable resource meaning you can stop and restart the DB independently and it shouldn't impact the backend (other than throwing an error because the DB is down). As such you should be able to handle any kind of network partition as long as your services are properly replicated across several hosts.
You need to pick a proper replication strategy, to make sure your service stays up and running. You can for example replicate your DB across Cloud provider Availability Zones so that when an entire zone goes down, your data remains available.
Using Kubernetes for example, you can put each of your containers (1 FE, 1 BE & 1 DB) in a pod. Kubernetes will deal with replicating this pod on many hosts and monitor that these pods are always up and running, if not a new pod will be created to cope with the failure.
If you want to mitigate the effect of network partitions, specify node affinities, hinting the scheduler to place containers on the same subset of machines and replicate on an appropriate number of hosts.
How many containers per host?
It really depends on the number of machines you use and the resources they have.
The rule is that you shouldn't bloat a host with too many containers if you don't specify any resource constraint (in terms of CPU or Memory). Otherwise, you risk compromising the host and exhaust its resources, which in turn will impact all the other services on the machine. A good replication strategy is not only important at a single service level, but also to ensure good health for the pool of services that are sharing a host.
Resource constraint should be dealt with depending on the type of your workload: a DB will probably use more resources than your Front-end container so you should size accordingly.
As an example, using Swarm, you can explicitely specify the number of CPUs or Memory you need for a given service (See docker service documentation). Although there are many possibilities and you can also give an upper bound/lower bound in terms of CPU or Memory usage. Depending on the values chosen, the scheduler will pin the service to the right machine with available resources.
Kubernetes works pretty much the same way and you can specify limits for your pods (See documentation).
Mesos has more fine grained resource management policies with frameworks (for specific workloads like Hadoop, Spark, and many more) and with over-commiting capabilities. Mesos is especially convenient for Big Data kind of workloads.
How should services be split?
It really depends on the orchestration solution:
In Docker Swarm, you would create a service for each component (FE, BE, DB) and set the desired replication number for each service.
In Kubernetes, you can either create a pod encompassing the entire application (FE, BE, DB and the volume attached to the DB) or create separate pods for the FE, BE, DB+volume.
Generally: use one service per type of container. Regarding groups of containers, evaluate if it is more convenient to scale the entire group of container (as an atomic unit, ie. a pod) than to manage them separately.
Sum up
Containers are better used with an orchestration framework/platform. There are plenty of available solutions to deal with container scheduling and resource management. Pick one that might fit your use case, and learn how to use it. Always pick an appropriate replication strategy, keeping in mind possible failure modes. Specify resource constraints for your containers/services when possible to avoid resource exhaustion which could potentially lead to bringing a host down.
This depends on the type of application you run in your containers. From the top of my head I can think of a couple different ways to look at this:
is your application diskspace heavy?
do you need the application fail save on multiple machines?
can you run multiple different instance of different applications on the same host without decreasing performance of them?
do you use software like kubernetes or swarm to handle your machines?
I think most of the question are interesting to answer even without containers. Containers might free you of thinking about single hosts, but you still have to decide and measure the load of your host machines yourself.
Minor question: Does it ever make sense to have less dbs than backend servers?
Yes.
Consider cases where you hit normal(without many joins) SQL select statements to get data from the database but your Business Logic demands too much computation. In those cases you might consider keeping your Back-End Service count high and Database Service count low.
It all depends on the use case which is getting solved.
The number of containers per host depends on the design ratio of the host and the workload ratio of the containers. Both ratios are
Throughput/Capacity ratios. In the old days, this was called E/B for execution/bandwidth. Execution was cpu and banwidth was I/o. Solutions were said to be cpu or I/o bound.
Today memories are very large the critical factor is usually cpu/nest
capacity. We describe workloads as cpu intense or nest intense. A useful proxy for nest capacity is the size of highest level cache. A useful design ratio estimator is (clock x cores)/cache. Fir the same core count the machine with a lower design ratio will hold more containers. In part this is because the machine with more cache will scale better and see less saturation at higher utilization. By
I have a minor bosun setup, and its collecting metrics from numerous services, and we are planning to scale these services on the cloud.
This will mean more data coming into bosun and hence, the load/efficiency/scale of bosun is affected.
I am afraid of losing data, due to network overhead, and in case of failures.
I am looking for any performance benchmark reports for bosun, or any inputs on benchmarking/testing bosun for scale and HA.
Also, any inputs on good practices to be followed to scale bosun will be helpful.
My current thinking is to run numerous bosun binaries as a cluster, backed by a distributed opentsdb setup.
Also, I am thinking is it worthwhile to run some bosun executors as plain 'collectors' of scollector data (with bosun -n command), and some to just calculate the alerts.
The problem with this approach is it that same alerts might be triggered from multiple bosun instances (running without option -n). Is there a better way to de-duplicate the alerts?
The current best practices are:
Use https://godoc.org/bosun.org/cmd/tsdbrelay to forward metrics to opentsdb. This gets the bosun binary out of the "critical path". It should also forward the metrics to bosun for indexing, and can duplicate the metric stream to multiple data centers for DR/Backups.
Make sure your hadoop/opentsdb cluster has at least 5 nodes. You can't do live maintenance on a 3 node cluster, and hadoop usually runs on a dozen or more nodes. We use Cloudera Manager to manage the hadoop cluster, and others have recommended Apache Ambari.
Use a load balancer like HAProxy to split the /api/put write traffic across multiple instances of tsdbrelay in an active/passive mode. We run one instance on each node (with tsdbrelay forwarding to the local opentsdb instance) and direct all write traffic at a primary write node (with multiple secondary/backup nodes).
Split the /api/query traffic across the remaining nodes pointed directly at opentsdb (no need to go thru the relay) in an active/active mode (aka round robin or hash based routing). This improves query performance by balancing them across the non-write nodes.
We only run a single bosun instance in each datacenter, with the DR site using the read only flag (any failover would be manual). It really isn't designed for HA yet, but in the future may allow two nodes to share a redis instance and allow active/active or active/passive HA.
By using tsdbrelay to duplicate the metric streams you don't have to deal with opentsdb/hbase replication and instead can setup multiple isolated monitoring systems in each datacenter and duplicate the metrics to whichever sites are appropriate. We have a primary and a DR site, and choose to duplicate all metrics to both data centers. I actually use the DR site daily for Grafana queries since it is closer to where I live.
You can find more details about production setups at http://bosun.org/resources including copies of all of the haproxy/tsdbrelay/etc configuration files we use at Stack Overflow.
How can I run multiple Neo4j databases simultaneously on a single server? I would like to have separate data directories and ports if this is possible.
Has anyone done this successfully and if so explain how to do this
I have tried something like:
bin\neo4j start
To set up Neo4j with multiple instances on a single server, you essentially configure a cluster, with each node having its own set of configuration properties. You then run the cluster in single-instance (non-HA) mode (otherwise you'll just end up with a replication cluster, which doesn't meet your requirement).
Full instructions are in the Neo4j docs online and in your local doc\manual folder.
Note: The folks at Neo Technology call this out for dev/test purposes. I can't offer guidance on running this in production, other than the fact you'd have multiple instances competing for the same resources (cpu, disk, memory, network).
It's possible to setup Rexster to serve up multiple neo4j database directories. This is great if you're using the Gremlin query language. Other access forms may not be available (beyond my knowledge). Check out this question/answer: possible to connect to multiple neo4j databases via bulbs/Rexster?