I'm trying to build a Decision Tree using gridsearch and a pipeline, but I get an error when I try to export the image using graphviz. I looked online and couldn't find anything; one potential problem would've been if I didn't use the best_estimator_ instance, but I did in this case.
Everything works (getting accuracy and other metrics) except the exporting graph part.
def TreeOpt(X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
std_scl = StandardScaler()
dec_tree = tree.DecisionTreeClassifier()
pipe = Pipeline(steps=[('std_slc', std_scl),
('dec_tree', dec_tree)])
criterion = ['gini', 'entropy']
max_depth = list(range(1,15))
parameters = dict(dec_tree__criterion=criterion,
dec_tree__max_depth=max_depth)
tree_gs = GridSearchCV(pipe, parameters)
tree_gs.fit(X_train, y_train)
export_graphviz(
tree_gs.best_estimator_,
out_file=("dec_tree.dot"),
feature_names=None,
class_names=None,
filled=True)
But I get
<ipython-input-2-bb91ec6ba0d9> in <module>
37 filled=True)
38
---> 39 DecTreeOptimizer(X = df.drop(['quality'], axis=1), y = df.quality)
40
<ipython-input-2-bb91ec6ba0d9> in DecTreeOptimizer(X, y)
30 print("Best score: " + str(tree_GS.best_score_))
31
---> 32 export_graphviz(
33 tree_GS.best_estimator_,
34 out_file=("dec_tree.dot"),
~\AppData\Local\Programs\Python\Python39\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
61 extra_args = len(args) - len(all_args)
62 if extra_args <= 0:
---> 63 return f(*args, **kwargs)
64
65 # extra_args > 0
~\AppData\Local\Programs\Python\Python39\lib\site-packages\sklearn\tree\_export.py in export_graphviz(decision_tree, out_file, max_depth, feature_names, class_names, label, filled, leaves_parallel, impurity, node_ids, proportion, rotate, rounded, special_characters, precision)
767 """
768
--> 769 check_is_fitted(decision_tree)
770 own_file = False
771 return_string = False
~\AppData\Local\Programs\Python\Python39\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
61 extra_args = len(args) - len(all_args)
62 if extra_args <= 0:
---> 63 return f(*args, **kwargs)
64
65 # extra_args > 0
~\AppData\Local\Programs\Python\Python39\lib\site-packages\sklearn\utils\validation.py in check_is_fitted(estimator, attributes, msg, all_or_any)
1096
1097 if not attrs:
-> 1098 raise NotFittedError(msg % {'name': type(estimator).__name__})
1099
1100
NotFittedError: This Pipeline instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.```
After long searches, finally found the answer here :Plot best decision tree with pipeline and GridsearchCV
The best_estimator_ attribute returns a pipeline instead of an object, so I just had to query it like this: best_estimator_[1] (and then I found a whole other lot of problems with my code, but that's part 2).
I will leave this here in case anyone else is going to need it. Cheers!
Related
I'm training to classify my traffic using SVM ML..as below
import pandas as pd # for process the DataSet
import matplotlib.pyplot as plt
ds= pd.read_csv("dataset_sdn.csv") # to read the dataset with name (ds)
ds.fillna(0)
ds #
ds output
X = ds.iloc[: , [4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21]] # Input Features
Y = ds.iloc[:, 22] # OutPut
print (X)
print (Y)
X output
Y output
from sklearn.model_selection import train_test_split
X_Train, X_Test, Y_Train, Y_Test = train_test_split (X, Y, test_size=0.25, random_state=0)
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_Train = sc_X.fit_transform(X_Train)
X_Test = sc_X.transform(X_Test)
from sklearn.svm import SVC
classifier = SVC (kernel='linear', random_state=0)
classifier.fit(X_Train, Y_Train)
Y_pred = classifier.predict(X_Test)
here in this last step i get error message
ValueError Traceback (most recent call
last) Input In [43], in <cell line: 3>()
1 from sklearn.svm import SVC
2 classifier = SVC (kernel='linear', random_state=0)
----> 3 classifier.fit(X_Train, Y_Train)
5 # The output predect
6 Y_pred = classifier.predict(X_Test)
File
~\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\svm_base.py:173,
in BaseLibSVM.fit(self, X, y, sample_weight)
171 check_consistent_length(X, y)
172 else:
--> 173 X, y = self._validate_data(
174 X,
175 y,
176 dtype=np.float64,
177 order="C",
178 accept_sparse="csr",
179 accept_large_sparse=False,
180 )
182 y = self._validate_targets(y)
184 sample_weight = np.asarray(
185 [] if sample_weight is None else sample_weight, dtype=np.float64
186 )
File
~\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\base.py:596,
in BaseEstimator._validate_data(self, X, y, reset,
validate_separately, **check_params)
594 y = check_array(y, input_name="y", **check_y_params)
595 else:
--> 596 X, y = check_X_y(X, y, **check_params)
597 out = X, y
599 if not no_val_X and check_params.get("ensure_2d", True):
File
~\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\utils\validation.py:1074,
in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order,
copy, force_all_finite, ensure_2d, allow_nd, multi_output,
ensure_min_samples, ensure_min_features, y_numeric, estimator) 1069
estimator_name = _check_estimator_name(estimator) 1070 raise
ValueError( 1071 f"{estimator_name} requires y to be
passed, but the target y is None" 1072 )
-> 1074 X = check_array( 1075 X, 1076 accept_sparse=accept_sparse, 1077
accept_large_sparse=accept_large_sparse, 1078 dtype=dtype,
1079 order=order, 1080 copy=copy, 1081
force_all_finite=force_all_finite, 1082 ensure_2d=ensure_2d,
1083 allow_nd=allow_nd, 1084
ensure_min_samples=ensure_min_samples, 1085
ensure_min_features=ensure_min_features, 1086
estimator=estimator, 1087 input_name="X", 1088 ) 1090 y =
_check_y(y, multi_output=multi_output, y_numeric=y_numeric, estimator=estimator) 1092 check_consistent_length(X, y)
File
~\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\utils\validation.py:899,
in check_array(array, accept_sparse, accept_large_sparse, dtype,
order, copy, force_all_finite, ensure_2d, allow_nd,
ensure_min_samples, ensure_min_features, estimator, input_name)
893 raise ValueError(
894 "Found array with dim %d. %s expected <= 2."
895 % (array.ndim, estimator_name)
896 )
898 if force_all_finite:
--> 899 _assert_all_finite(
900 array,
901 input_name=input_name,
902 estimator_name=estimator_name,
903 allow_nan=force_all_finite == "allow-nan",
904 )
906 if ensure_min_samples > 0:
907 n_samples = _num_samples(array)
File
~\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\utils\validation.py:146,
in _assert_all_finite(X, allow_nan, msg_dtype, estimator_name,
input_name)
124 if (
125 not allow_nan
126 and estimator_name (...)
130 # Improve the error message on how to handle missing values in
131 # scikit-learn.
132 msg_err += (
133 f"\n{estimator_name} does not accept missing values"
134 " encoded as NaN natively. For supervised learning, you might want" (...)
144 "#estimators-that-handle-nan-values"
145 )
--> 146 raise ValueError(msg_err)
148 # for object dtype data, we only check for NaNs (GH-13254)
149 elif X.dtype == np.dtype("object") and not allow_nan:
ValueError: Input X contains NaN. SVC does not accept missing values
encoded as NaN natively. For supervised learning, you might want to
consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor
which accept missing values encoded as NaNs natively. Alternatively,
it is possible to preprocess the data, for instance by using an
imputer transformer in a pipeline or drop samples with missing values.
See https://scikit-learn.org/stable/modules/impute.html You can find a
list of all estimators that handle NaN values at the following page:
https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
So, plz any advice to solve this error, although there isn't any NaN value in the dataset
You are not replacing old dataframe with new dataframe.
Use this:
ds = ds.fillna(0)
OR
ds.fillna(0, inplace=True)
So, I have been working on my first ML project and as part of that I have been trying out various models from sci-kit learn and I wrote this piece of code for a random forest model:
#Random Forest
reg = RandomForestRegressor(random_state=0, criterion = 'mse')
#Apply grid search for best parameters
params = {'randomforestregressor__n_estimators' : range(100, 500, 200),
'randomforestregressor__min_samples_split' : range(2, 10, 3)}
pipe = make_pipeline(reg)
grid = GridSearchCV(pipe, param_grid = params, scoring='mean_squared_error', n_jobs=-1, iid=False, cv=5)
reg = grid.fit(X_train, y_train)
print('Best MSE: ', grid.best_score_)
print('Best Parameters: ', grid.best_estimator_)
y_train_pred = reg.predict(X_train)
y_test_pred = reg.predict(X_test)
tr_err = mean_squared_error(y_train_pred, y_train)
ts_err = mean_squared_error(y_test_pred, y_test)
print(tr_err, ts_err)
results_train['random_forest'] = tr_err
results_test['random_forest'] = ts_err
But, when I run this code, I get the following error:
KeyError Traceback (most recent call last)
~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in get_scorer(scoring)
359 else:
--> 360 scorer = SCORERS[scoring]
361 except KeyError:
KeyError: 'mean_squared_error'
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-149-394cd9e0c273> in <module>
5 pipe = make_pipeline(reg)
6 grid = GridSearchCV(pipe, param_grid = params, scoring='mean_squared_error', n_jobs=-1, iid=False, cv=5)
----> 7 reg = grid.fit(X_train, y_train)
8 print('Best MSE: ', grid.best_score_)
9 print('Best Parameters: ', grid.best_estimator_)
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
71 FutureWarning)
72 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 73 return f(**kwargs)
74 return inner_f
75
~\anaconda3\lib\site-packages\sklearn\model_selection\_search.py in fit(self, X, y, groups, **fit_params)
652 cv = check_cv(self.cv, y, classifier=is_classifier(estimator))
653
--> 654 scorers, self.multimetric_ = _check_multimetric_scoring(
655 self.estimator, scoring=self.scoring)
656
~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in _check_multimetric_scoring(estimator, scoring)
473 if callable(scoring) or scoring is None or isinstance(scoring,
474 str):
--> 475 scorers = {"score": check_scoring(estimator, scoring=scoring)}
476 return scorers, False
477 else:
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
71 FutureWarning)
72 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 73 return f(**kwargs)
74 return inner_f
75
~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in check_scoring(estimator, scoring, allow_none)
403 "'fit' method, %r was passed" % estimator)
404 if isinstance(scoring, str):
--> 405 return get_scorer(scoring)
406 elif callable(scoring):
407 # Heuristic to ensure user has not passed a metric
~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in get_scorer(scoring)
360 scorer = SCORERS[scoring]
361 except KeyError:
--> 362 raise ValueError('%r is not a valid scoring value. '
363 'Use sorted(sklearn.metrics.SCORERS.keys()) '
364 'to get valid options.' % scoring)
ValueError: 'mean_squared_error' is not a valid scoring value. Use sorted(sklearn.metrics.SCORERS.keys()) to get valid options.
So, I tried running it by removing the scoring='mean_squared_error' from GridSearchCV(pipe, param_grid = params, scoring='mean_squared_error', n_jobs=-1, iid=False, cv=5). When I do that, the code runs perfectly and gives a decent enough training and testing error.
Regardless of that, I can't figure out why with scoring='mean_squared_error' parameter in GridSearchCV function throws me that error. What am I doing wrong?
According to the documentation:
All scorer objects follow the convention that higher return values are better than lower return values. Thus metrics which measure the distance between the model and the data, like metrics.mean_squared_error, are available as neg_mean_squared_error which return the negated value of the metric.
This means that you have to pass scoring='neg_mean_squared_error' in order to evaluate the grid search results with Mean Squared Error.
This is the code that I used to solve a classification problem pertaining to credit card fraud detection:
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
df = pd.read_csv(r'C:\Users\SVISHWANATH\Downloads\creditcard.csv')
f = df.drop(['Class'], axis = 1)
g = df.Class
g.values.reshape(-1,1)
X_train, X_test, y_train, y_test = train_test_split(f, g, stratify = g)
knn = KNeighborsClassifier(n_neighbors = 5)
knn.fit(X_train, y_train)
knn.predict(y_test)
For some reason, even if I specify the reshape parameter, the above code is resulting in an error. This is the error:
ValueError Traceback (most recent call last)
<ipython-input-37-d24a7d3e9bd3> in <module>
12 knn = KNeighborsClassifier(n_neighbors = 5)
13 knn.fit(X_train, y_train)
---> 14 knn.predict(y_test)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\neighbors\_classification.py in predict(self, X)
171 Class labels for each data sample.
172 """
--> 173 X = check_array(X, accept_sparse='csr')
174
175 neigh_dist, neigh_ind = self.kneighbors(X)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
71 FutureWarning)
72 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 73 return f(**kwargs)
74 return inner_f
75
~\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
622 "Reshape your data either using array.reshape(-1, 1) if "
623 "your data has a single feature or array.reshape(1, -1) "
--> 624 "if it contains a single sample.".format(array))
625
626 # in the future np.flexible dtypes will be handled like object dtypes
ValueError: Expected 2D array, got 1D array instead:
array=[0 0 0 ... 0 0 0].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
y_test are the results you're trying to predict (i.e. classes). You need to predict from the available data, i.e. data you would have when trying to classify, which would be everything else except the classes: in your case that is X_test, so you need to change knn.predict(y_test) to knn.predict(X_test). You can then use y_test to compare your predictions and see how accurate they are.
x_tu = data_cls_tu.iloc[:,1:].values
y_tu = data_cls_tu.iloc[:,0].values
classifier = DecisionTreeClassifier()
parameters = [{"max_depth": [3,None],
"min_samples_leaf": np.random.randint(1,9),
"criterion": ["gini","entropy"]}]
randomcv = RandomizedSearchCV(estimator=classifier, param_distributions=parameters,
scoring='accuracy', cv=10, n_jobs=-1,
random_state=0)
randomcv.fit(x_tu, y_tu)
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-17-fa8376cb54b8> in <module>()
11 scoring='accuracy', cv=10, n_jobs=-1,
12 random_state=0)
---> 13 randomcv.fit(x_tu, y_tu)
~\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py in fit(self, X, y, groups, **fit_params)
616 n_splits = cv.get_n_splits(X, y, groups)
617 # Regenerate parameter iterable for each fit
--> 618 candidate_params = list(self._get_param_iterator())
619 n_candidates = len(candidate_params)
620 if self.verbose > 0:
~\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py in __iter__(self)
236 # in this case we want to sample without replacement
237 all_lists = np.all([not hasattr(v, "rvs")
--> 238 for v in self.param_distributions.values()])
239 rnd = check_random_state(self.random_state)
240
AttributeError: 'list' object has no attribute 'values'
Hi, I keep getting error on the fit method for RandomSearchCV.
It worked when I used them on GridSearchCV, but GridSearchCV took 5 hours to complete.
x_tu, y_tu are both numpy.ndarray type.
param_distributions must be dict object (documentation) but you are passing a list containing single dict. Remove outer square brackets then it should work fine.
It should be like :
parameters = {"max_depth": [3,None],
"min_samples_leaf": [np.random.randint(1,9)],
"criterion": ["gini","entropy"]}
I have built a RNN with BasicRNN now I want to use the LSTMCell but the passage does not seem trivial. What should I change?
First i define all the placeholders and variables:
X_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length, embedding_size])
Y_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])
init_state = tf.placeholder(tf.float32, [batch_size, state_size])
W = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32)
b = tf.Variable(np.zeros((batch_size, num_classes)), dtype=tf.float32)
W2 = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32)
b2 = tf.Variable(np.zeros((batch_size, num_classes)), dtype=tf.float32)
Then I unstack the labels:
labels_series = tf.transpose(batchY_placeholder)
labels_series = tf.unstack(batchY_placeholder, axis=1)
inputs_series = X_placeholder
Then i define my RNN:
cell = tf.contrib.rnn.BasicLSTMCell(state_size, state_is_tuple = False)
states_series, current_state = tf.nn.dynamic_rnn(cell, inputs_series, initial_state = init_state)
The error that I get is:
InvalidArgumentError Traceback (most recent call last)
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/framework/common_shapes.py in _call_cpp_shape_fn_impl(op, input_tensors_needed, input_tensors_as_shapes_needed, debug_python_shape_fn, require_shape_fn)
669 node_def_str, input_shapes, input_tensors, input_tensors_as_shapes,
--> 670 status)
671 except errors.InvalidArgumentError as err:
/home/deepnlp2017/anaconda3/lib/python3.5/contextlib.py in __exit__(self, type, value, traceback)
65 try:
---> 66 next(self.gen)
67 except StopIteration:
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py in raise_exception_on_not_ok_status()
468 compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 469 pywrap_tensorflow.TF_GetCode(status))
470 finally:
InvalidArgumentError: Dimensions must be equal, but are 50 and 100 for 'rnn/while/basic_lstm_cell/mul' (op: 'Mul') with input shapes: [32,50], [32,100].
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-19-2ac617f4dde4> in <module>()
4 #cell = tf.contrib.rnn.BasicRNNCell(state_size)
5 cell = tf.contrib.rnn.BasicLSTMCell(state_size, state_is_tuple = False)
----> 6 states_series, current_state = tf.nn.dynamic_rnn(cell, inputs_series, initial_state = init_state)
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/ops/rnn.py in dynamic_rnn(cell, inputs, sequence_length, initial_state, dtype, parallel_iterations, swap_memory, time_major, scope)
543 swap_memory=swap_memory,
544 sequence_length=sequence_length,
--> 545 dtype=dtype)
546
547 # Outputs of _dynamic_rnn_loop are always shaped [time, batch, depth].
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/ops/rnn.py in _dynamic_rnn_loop(cell, inputs, initial_state, parallel_iterations, swap_memory, sequence_length, dtype)
710 loop_vars=(time, output_ta, state),
711 parallel_iterations=parallel_iterations,
--> 712 swap_memory=swap_memory)
713
714 # Unpack final output if not using output tuples.
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in while_loop(cond, body, loop_vars, shape_invariants, parallel_iterations, back_prop, swap_memory, name)
2624 context = WhileContext(parallel_iterations, back_prop, swap_memory, name)
2625 ops.add_to_collection(ops.GraphKeys.WHILE_CONTEXT, context)
-> 2626 result = context.BuildLoop(cond, body, loop_vars, shape_invariants)
2627 return result
2628
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in BuildLoop(self, pred, body, loop_vars, shape_invariants)
2457 self.Enter()
2458 original_body_result, exit_vars = self._BuildLoop(
-> 2459 pred, body, original_loop_vars, loop_vars, shape_invariants)
2460 finally:
2461 self.Exit()
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in _BuildLoop(self, pred, body, original_loop_vars, loop_vars, shape_invariants)
2407 structure=original_loop_vars,
2408 flat_sequence=vars_for_body_with_tensor_arrays)
-> 2409 body_result = body(*packed_vars_for_body)
2410 if not nest.is_sequence(body_result):
2411 body_result = [body_result]
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/ops/rnn.py in _time_step(time, output_ta_t, state)
695 skip_conditionals=True)
696 else:
--> 697 (output, new_state) = call_cell()
698
699 # Pack state if using state tuples
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/ops/rnn.py in <lambda>()
681
682 input_t = nest.pack_sequence_as(structure=inputs, flat_sequence=input_t)
--> 683 call_cell = lambda: cell(input_t, state)
684
685 if sequence_length is not None:
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py in __call__(self, inputs, state, scope)
182 i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)
183
--> 184 new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
185 self._activation(j))
186 new_h = self._activation(new_c) * sigmoid(o)
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/ops/math_ops.py in binary_op_wrapper(x, y)
882 if not isinstance(y, sparse_tensor.SparseTensor):
883 y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y")
--> 884 return func(x, y, name=name)
885
886 def binary_op_wrapper_sparse(sp_x, y):
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/ops/math_ops.py in _mul_dispatch(x, y, name)
1103 is_tensor_y = isinstance(y, ops.Tensor)
1104 if is_tensor_y:
-> 1105 return gen_math_ops._mul(x, y, name=name)
1106 else:
1107 assert isinstance(y, sparse_tensor.SparseTensor) # Case: Dense * Sparse.
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/ops/gen_math_ops.py in _mul(x, y, name)
1623 A `Tensor`. Has the same type as `x`.
1624 """
-> 1625 result = _op_def_lib.apply_op("Mul", x=x, y=y, name=name)
1626 return result
1627
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py in apply_op(self, op_type_name, name, **keywords)
761 op = g.create_op(op_type_name, inputs, output_types, name=scope,
762 input_types=input_types, attrs=attr_protos,
--> 763 op_def=op_def)
764 if output_structure:
765 outputs = op.outputs
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py in create_op(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_shapes, compute_device)
2395 original_op=self._default_original_op, op_def=op_def)
2396 if compute_shapes:
-> 2397 set_shapes_for_outputs(ret)
2398 self._add_op(ret)
2399 self._record_op_seen_by_control_dependencies(ret)
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py in set_shapes_for_outputs(op)
1755 shape_func = _call_cpp_shape_fn_and_require_op
1756
-> 1757 shapes = shape_func(op)
1758 if shapes is None:
1759 raise RuntimeError(
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py in call_with_requiring(op)
1705
1706 def call_with_requiring(op):
-> 1707 return call_cpp_shape_fn(op, require_shape_fn=True)
1708
1709 _call_cpp_shape_fn_and_require_op = call_with_requiring
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/framework/common_shapes.py in call_cpp_shape_fn(op, input_tensors_needed, input_tensors_as_shapes_needed, debug_python_shape_fn, require_shape_fn)
608 res = _call_cpp_shape_fn_impl(op, input_tensors_needed,
609 input_tensors_as_shapes_needed,
--> 610 debug_python_shape_fn, require_shape_fn)
611 if not isinstance(res, dict):
612 # Handles the case where _call_cpp_shape_fn_impl calls unknown_shape(op).
/home/deepnlp2017/.local/lib/python3.5/site-packages/tensorflow/python/framework/common_shapes.py in _call_cpp_shape_fn_impl(op, input_tensors_needed, input_tensors_as_shapes_needed, debug_python_shape_fn, require_shape_fn)
673 missing_shape_fn = True
674 else:
--> 675 raise ValueError(err.message)
676
677 if missing_shape_fn:
ValueError: Dimensions must be equal, but are 50 and 100 for 'rnn/while/basic_lstm_cell/mul' (op: 'Mul') with input shapes: [32,50], [32,100].
You should consider giving the error trace. Otherwise it is hard (or impossible) to help.
I reproduced the situation and found that the issue was coming from state unpacking, i.e. line c, h = state.
Try to set state_is_tuple to false i.e.
cell = tf.contrib.rnn.BasicLSTMCell(state_size, state_is_tuple=False)
I'm not sure why this is happening. Are you loading a previous model? What is your tensorflow version?
More information on TensorFlow RNN Cells:
I would suggest you to take a look at: WildML post, section "RNN CELLS, WRAPPERS AND MULTI-LAYER RNNS".
It states that:
BasicRNNCell – A vanilla RNN cell.
GRUCell – A Gated Recurrent Unit cell.
BasicLSTMCell – An LSTM cell based on Recurrent Neural Network Regularization. No peephole connection or cell clipping.
LSTMCell – A more complex LSTM cell that allows for optional peephole connections and cell clipping.
MultiRNNCell – A wrapper to combine multiple cells into a multi-layer cell.
DropoutWrapper – A wrapper to add dropout to input and/or output connections of a cell.
Given this, I would suggest you to switch from BasicRNNCell to BasicLSTMCell. Where Basic here means "use it unless you know what you are doing". If you want to try LSTMs without going into details, thats the way to go. It may be straightforward, just replace with it and voilà!
If not, share some of your code + error.
Hope it helps
The problem seems to be with the init_state variable.
Basic RNN cells only have one state variable while LSTM has a visible and a hidden state. Specify the options state_is_tuple=False will concat the two state variables into one, therefore double the size of what you have specified in the init_state declaration.
To avoid this, one can use the built-in zero_state method for an LSTMCell to initialize the state in the correct way without worrying about size differences.
So it would simply be:
init_state = cell.zero_state(batch_size, dtype)
Of course will will have to be placed after the line where the cell is built.