Set round shape for a point in Metal, Swift - ios

I'm creating animation using Metal.
Now it looks like this.
I want the shape of every point to be round like this
Here is my current shader code:
struct VertexOut {
float4 position [[position]];
float pointSize [[point_size]];
};
struct Uniforms {
float4x4 ndcMatrix;
float ptmRatio;
float pointSize;
};
vertex VertexOut vertex_shader(const device packed_float2 * vertex_array [[buffer(0)]],
const device Uniforms& uniforms [[buffer(1)]],
unsigned int vid [[vertex_id]]) {
VertexOut vertexOut;
float2 position = vertex_array[vid];
vertexOut.position = uniforms.ndcMatrix * float4(position.x * uniforms.ptmRatio, position.y * uniforms.ptmRatio * 1.5, 0, 1);
vertexOut.pointSize = uniforms.pointSize * 1.5;
return vertexOut;
}
fragment half4 fragment_shader(VertexOut fragData [[stage_in]],
float2 pointCoord [[point_coord]]) {
return half4(0.3, 0.3, 0.1, 0.1);
}
Before, I've already achieved the desired effect using fragment shader. My code was:
fragment half4 fragment_shader(VertexOut fragData [[stage_in]],
float2 pointCoord [[point_coord]]) {
float dist = length(pointCoord - float2(0.4));
float4 color = fragData.color;
// Marking particles round shaped
color.a = 1.0 - smoothstep(0.4, 0.4, dist);
// Setting yellow color
color.b = (0.3, 0.3, 0.1, 0.1);
return half4(color);
}
It worked fine with shape, but it didn't give the desired color effect. So I need to find another way to set both color and shape correctly.
I've tried setting two separate fragment functions, one for shape and one for color, and then passing them to PipelineState, but it didn't work.
Any help is appreciated!

I've solved it in one function:
fragment half4 fragment_shader(VertexOut fragData [[stage_in]],
float2 pointCoord [[point_coord]]) {
if (length(pointCoord - float2(0.5)) > 0.5) {
discard_fragment();
}
return half4(0.3, 0.3, 0.1, 0.1);
}

Related

Adding Light Falloff for multiple Point Lights

I'm currently trying to add multiple point lights to my game. What I have done appears to be mostly working, except for a small problem of blending light falloff. Here's two images to show you what's happening. In the first one, Light Falloff is commented out. Both point lights appear correctly.
And here's the second image, where I have light falloff enabled. You will see that only light #2 is "mostly" visible. There are traces of light #1, but for the most part, light #1 appears to be overridden by light #2's falloff. In other words, each consecutive light's falloff overrides the light from previous lights.
Does anyone know how to add falloff for multiple point lights? I'm sure I'm doing something slightly wrong, and that's why the lights are not properly accumulated.
Here's my shader:
struct Vertex
{
float4 pos : POSITION;
float2 tex : TEXTURE;
float3 norm : NORMAL;
};
struct PixelShaderArgs
{
float4 pos : SV_POSITION;
float2 col : TEXTURE;
float3 norm : NORMAL;
float3 worldPos : POSITION;
};
struct PointLightShaderArgs
{
float3 pos;
float radius;
float intensity;
float3 padding;
float4 ambient;
float4 diffuse;
};
Texture2D ShaderTexture : register(t0);
SamplerState Sampler : register(s0);
float4x4 localMatrix : register(b0);
cbuffer ShaderDataBuffer : register(b1)
{
float2 TextureResolution;
};
cbuffer cbPerFrame : register(b3)
{
PointLightShaderArgs light[8];
};
cbuffer WorldPositionBuffer : register(b4)
{
float4x4 World;
};
PixelShaderArgs VertexShaderMain(Vertex vertex)
{
PixelShaderArgs output;
output.pos = mul(vertex.pos, localMatrix);
output.col = vertex.tex;
output.norm = mul(vertex.norm, World);
output.worldPos = mul(vertex.pos, World);
return output;
}
int2 convertUVToPixel(float u, float v)
{
int width = TextureResolution.x;
int height = TextureResolution.y;
int xCoordinate = floor(u * width);
int yCoordinate = floor(v * height);
return int2(xCoordinate % width, yCoordinate % height);
}
float Falloff(float distance, float radius)
{
return clamp(1.0f - (distance / radius), 0.0, 1.0);
}
#define ATTENUATION_CONSTANT 1.0f // 0% Constant
#define ATTENUATION_LINEAR 0.0f // 100% Linear
#define ATTENUATION_QUADRATIC 0.0f // 100% Quadratic
float4 PixelShaderMain(PixelShaderArgs pixelShaderArgs) : SV_Target
{
float u = pixelShaderArgs.col.x;
float v = pixelShaderArgs.col.y;
// Lighting
float3 fragColor = float3(0.0f, 0.0f, 0.0f);
float4 diffuse = ShaderTexture.Load(int3(convertUVToPixel(u, v), 0));
for (int i = 0; i < 2; i++)
{
float3 ambient = diffuse * light[i].ambient;
pixelShaderArgs.norm = normalize(pixelShaderArgs.norm);
float3 lightToPixelVec = light[i].pos - pixelShaderArgs.worldPos;
float distance = length(lightToPixelVec);
float luminosity = dot(lightToPixelVec / distance, pixelShaderArgs.norm);
float intensity = 1.00f;
if (luminosity > 0.0f)
{
// Do lighting attenuation
fragColor += luminosity * diffuse * light[i].diffuse;
fragColor /= ATTENUATION_CONSTANT + (ATTENUATION_LINEAR * distance) + (ATTENUATION_QUADRATIC * (distance * distance));
fragColor *= light[i].intensity; // multiply the final result by the intensity.
fragColor *= Falloff(distance, light[i].radius); // This is what's causing the problem!!
//fragColor = saturate(fragColor + ambient);
}
}
return float4(fragColor, diffuse.a);
}
I figured this out. The solution was to move the falloff calculation up and inline it with the following line: fragColor += luminosity * diffuse * light[i].diffuse * Falloff(distance,light[i].radius);
This results the correcting falloff blending, shown in this picture:
and another picture showing three overlapped point lights:
Here's the updated shader (A lot of changes were made from the first one because I'm actually posting this answer late)
struct Vertex
{
float4 pos : POSITION;
float2 tex : TEXTURE;
float3 norm : NORMAL;
};
struct PixelShaderArgs
{
float4 pos : SV_POSITION;
float2 col : TEXTURE;
float3 norm : NORMAL;
float3 worldPos : POSITION;
};
struct PointLightShaderArgs
{
float3 pos;
float radius;
float intensity;
float3 padding;
float4 ambient;
float4 diffuse;
};
Texture2D ShaderTexture : register(t0);
SamplerState Sampler : register(s0);
float4x4 localMatrix : register(b0);
cbuffer ShaderDataBuffer : register(b1)
{
float2 TextureResolution;
};
cbuffer cbPerFrame : register(b3)
{
PointLightShaderArgs light[32];
};
cbuffer WorldPositionBuffer : register(b4)
{
float4x4 World;
};
PixelShaderArgs VertexShaderMain(Vertex vertex)
{
PixelShaderArgs output;
output.pos = mul(vertex.pos, localMatrix);
output.col = vertex.tex;
output.norm = mul(vertex.norm, World);
output.worldPos = mul(vertex.pos, World);
return output;
}
int2 convertUVToPixel(float u, float v)
{
int width = TextureResolution.x;
int height = TextureResolution.y;
int xCoordinate = floor(u * width);
int yCoordinate = floor(v * height);
return int2(xCoordinate % width, yCoordinate % height);
}
float Falloff(float distance, float radius)
{
return clamp(1.0f - (distance / radius), 0.0, 1.0);
}
#define ATTENUATION_CONSTANT 1.0f // 0% Constant
#define ATTENUATION_LINEAR 0.0f // 100% Linear
#define ATTENUATION_QUADRATIC 0.0f // 100% Quadratic; Democrats are domestic terrorists
float4 PixelShaderMain(PixelShaderArgs pixelShaderArgs) : SV_Target
{
float u = pixelShaderArgs.col.x;
float v = pixelShaderArgs.col.y;
// Lighting
float3 fragColor = float3(0.0f, 0.0f, 0.0f);
float4 diffuse = ShaderTexture.Load(int3(convertUVToPixel(u, v), 0));
for (int i = 0; i < 32; i++)
{
float3 ambient = diffuse * light[i].ambient;
pixelShaderArgs.norm = normalize(pixelShaderArgs.norm);
float3 lightToPixelVec = light[i].pos - pixelShaderArgs.worldPos;
float distance = length(lightToPixelVec);
float luminosity = dot(lightToPixelVec / distance, pixelShaderArgs.norm);
float intensity = 1.00f;
if (luminosity > 0.0f)
{
// Do lighting attenuation
fragColor += luminosity * diffuse * light[i].diffuse * Falloff(distance,light[i].radius);
fragColor /= ATTENUATION_CONSTANT + (ATTENUATION_LINEAR * distance) + (ATTENUATION_QUADRATIC * (distance * distance));
fragColor *= light[i].intensity; // multiply the final result by the intensity.
}
fragColor = saturate(fragColor + ambient);
}
return float4(fragColor, diffuse.a);
}

METAL - Fragment shader is producing noise

I am trying to use basic lighting techniques described in Metal By Tutorials to produce a diffuse, ambient, and specular light on my models.
I have used this lighting algorithm plenty of times and it works great, but the past 2 times the specular color seems to produce a characteristic green and yellow noise. Even without the specular color, the diffuse and ambient colors seem to produce this awful noise.
Any ideas as to why this would be happening?
I wonder if the fact that I do not use a renderer class is causing this problem.
Here is fragment shader code:
fragment float4 fragmentmain(const VOUT in [[stage_in]],
texture2d<float> texture1 [[texture(0)]],
constant FRAGMENTUNIFORMS &data [[buffer(2)]],
constant LIGHT *lights [[buffer(3)]])
{
constexpr sampler texturesampler;
float3 basecolor = texture1.sample(texturesampler, in.coords).rgb;
float3 diffusecolor;
float3 ambientcolor;
float3 specularcolor;
float3 materialspecularcolor = float3(1,1,1);
float shine = 32;
float3 normaldirection = normalize(in.normal);
for (uint i = 0 ; i < data.lightcount ; i++) {
LIGHT light = lights[i];
if (light.type == sun) {
float3 lightdirection = normalize(-light.position);
float diffuseintensity = saturate(-dot(lightdirection, normaldirection));
diffusecolor = light.color * basecolor * diffuseintensity;
if (diffuseintensity > 0) {
float3 reflection = reflect(lightdirection, normaldirection);
float3 cameradirection = normalize(in.position.xyz - data.cameraposition);
float specularintensity = pow(saturate(-dot(reflection, cameradirection)), shine);
specularcolor = light.color * materialspecularcolor * specularintensity;
}
} else if (light.type == ambient) {
ambientcolor = light.color * light.intensity;
}
}
float3 color = diffusecolor + ambientcolor + specularcolor;
return float4(color, 1);
}
Interesting solution to the problem.
I changed:
float3 diffusecolor;
float3 ambientcolor;
float3 specularcolor;
to
float3 diffusecolor = float3(0,0,0);
float3 ambientcolor = float3(0,0,0);
float3 specularcolor = float3(0,0,0);
and the image turned entirely black. No more noise. However, it seemed that my lights were not being iterated through in the for loop.
It turned out that my light.type enum was set to
enum LIGHTTYPE {
sun = 1,
ambient = 2
};
but when I changed it to:
enum LIGHTTYPE {
sun = 0,
ambient = 1
};
the issue was totally resolved. Sorry!

Metal vertex shader draw points of a Texture

I want to execute Metal (or OpenGLES 3.0) shader that draws Points primitive with blending. To do that, I need to pass all the pixel coordinates of the texture to Vertex shader as vertices which computes the position of the vertex to be passed to fragment shader. The fragment shader simply outputs the color for the point with blending enabled. My problem is if there is an efficient was to pass coordinates of vertices to the vertex shader, since there would be too many vertices for 1920x1080 image, and that needs to be done 30 times in a second? Like we do in a compute shader by using dispatchThreadgroups command, except that compute shader can not draw a geometry with blending enabled.
EDIT: This is what I did -
let vertexFunctionRed = library!.makeFunction(name: "vertexShaderHistogramBlenderRed")
let fragmentFunctionAccumulator = library!.makeFunction(name: "fragmentShaderHistogramAccumulator")
let renderPipelineDescriptorRed = MTLRenderPipelineDescriptor()
renderPipelineDescriptorRed.vertexFunction = vertexFunctionRed
renderPipelineDescriptorRed.fragmentFunction = fragmentFunctionAccumulator
renderPipelineDescriptorRed.colorAttachments[0].pixelFormat = .bgra8Unorm
renderPipelineDescriptorRed.colorAttachments[0].isBlendingEnabled = true
renderPipelineDescriptorRed.colorAttachments[0].rgbBlendOperation = .add
renderPipelineDescriptorRed.colorAttachments[0].sourceRGBBlendFactor = .one
renderPipelineDescriptorRed.colorAttachments[0].destinationRGBBlendFactor = .one
do {
histogramPipelineRed = try device.makeRenderPipelineState(descriptor: renderPipelineDescriptorRed)
} catch {
print("Unable to compile render pipeline state Histogram Red!")
return
}
Drawing code:
let commandBuffer = commandQueue?.makeCommandBuffer()
let renderEncoder = commandBuffer?.makeRenderCommandEncoder(descriptor: renderPassDescriptor!)
renderEncoder?.setRenderPipelineState(histogramPipelineRed!)
renderEncoder?.setVertexTexture(metalTexture, index: 0)
renderEncoder?.drawPrimitives(type: .point, vertexStart: 0, vertexCount: 1, instanceCount: metalTexture!.width*metalTexture!.height)
renderEncoder?.drawPrimitives(type: .point, vertexStart: 0, vertexCount: metalTexture!.width*metalTexture!.height, instanceCount: 1)
and Shaders:
vertex MappedVertex vertexShaderHistogramBlenderRed (texture2d<float, access::sample> inputTexture [[ texture(0) ]],
unsigned int vertexId [[vertex_id]])
{
MappedVertex out;
constexpr sampler s(s_address::clamp_to_edge, t_address::clamp_to_edge, min_filter::linear, mag_filter::linear, coord::pixel);
ushort width = inputTexture.get_width();
ushort height = inputTexture.get_height();
float X = (vertexId % width)/(1.0*width);
float Y = (vertexId/width)/(1.0*height);
int red = inputTexture.sample(s, float2(X,Y)).r;
out.position = float4(-1.0 + (red * 0.0078125), 0.0, 0.0, 1.0);
out.pointSize = 1.0;
out.colorFactor = half3(1.0, 0.0, 0.0);
return out;
}
fragment half4 fragmentShaderHistogramAccumulator ( MappedVertex in [[ stage_in ]]
)
{
half3 colorFactor = in.colorFactor;
return half4(colorFactor*(1.0/256.0), 1.0);
}
Maybe you can draw a single point instanced 1920x1080 times. Something like:
vertex float4 my_func(texture2d<float, access::read> image [[texture(0)]],
constant uint &width [[buffer(0)]],
uint instance_id [[instance_id]])
{
// decompose the instance ID to a position
uint2 pos = uint2(instance_id % width, instance_id / width);
return float4(image.read(pos).r * 255, 0, 0, 0);
}

How to pass textures to DirectX 9 pixel shader?

I have pixel shader
// fxc.exe tiles.fs /T ps_3_0 /Fotiles.fsc /Fctiles.fsl
struct PSInput
{
float4 Pos : TEXCOORD0;
float3 Normal : TEXCOORD1;
float2 TexcoordUV : TEXCOORD2;
float2 TexcoordST : TEXCOORD3;
};
sampler2D sampler0; //uniform
sampler2D sampler1; //uniform
sampler2D sampler2; //uniform
sampler2D sampler3; //uniform
sampler2D alphamap1;//uniform
sampler2D alphamap2;//uniform
sampler2D alphamap3;//uniform
uniform int tex_count = 0;
uniform float4 color_ambient = float4(0.75, 0.75, 0.75, 1.0);
uniform float4 color_diffuse = float4(0.25, 0.25, 0.25, 1.0);
uniform float4 color_specular = float4(1.0, 1.0, 1.0, 1.0);
uniform float shininess = 77.0f;
uniform float3 light_position = float3(12.0f, 32.0f, 560.0f);
float4 main(PSInput In) : COLOR
{
float3 light_direction = normalize(light_position - (float3)In.Pos);
float3 normal = normalize(In.Normal);
float3 half_vector = normalize(light_direction + normalize((float3)In.Pos));
float diffuse = max(0.0, dot(normal, light_direction));
float specular = pow(max(0.0, dot(In.Normal, half_vector)), shininess);
float4 color = tex2D(sampler0, In.TexcoordUV);
if (tex_count > 0){
float4 temp = tex2D(sampler1, In.TexcoordUV);
float4 amap = tex2D(alphamap1, In.TexcoordST);
color = lerp(color, temp, amap.a);
}
if (tex_count > 1){
float4 temp = tex2D(sampler2, In.TexcoordUV);
float4 amap = tex2D(alphamap2, In.TexcoordST);
color = lerp(color, temp, amap.a);
}
if (tex_count > 2){
float4 temp = tex2D(sampler3, In.TexcoordUV);
float4 amap = tex2D(alphamap3, In.TexcoordST);
color = lerp(color, temp, amap.a);
}
color = color * color_ambient + diffuse * color_diffuse + specular * color_specular;
return color;
}
vertex shader
// fxc.exe tiles.vs /T vs_3_0 /Fotiles.vsc /Fctiles.vsl
struct VSInput
{
float3 Pos : POSITION;
float3 Normal : NORMAL;
float2 TexcoordUV : TEXCOORD0;
float2 TexcoordST : TEXCOORD1;
};
struct PSInput
{
float4 Pos : POSITION;
float3 Normal : TEXCOORD0;
float2 TexcoordUV : TEXCOORD1;
float2 TexcoordST : TEXCOORD2;
};
uniform matrix modelMatrix;
uniform matrix projectionMatrix;
uniform matrix lookAtMatrix;
PSInput main(VSInput In)
{
PSInput Out = (PSInput) 0;
//projectionMatrix * lookAtMatrix * modelMatrix;
matrix MVP = mul(modelMatrix, lookAtMatrix);
MVP = mul(MVP, projectionMatrix);
Out.Normal = mul(In.Normal, (float3x3)modelMatrix);
Out.Pos = mul(float4(In.Pos, 1.0), MVP);
Out.TexcoordUV = In.TexcoordUV;
Out.TexcoordST = In.TexcoordST;
return Out;
}
same works under OpenGL + GLSL except mix replaced by lerp (I hope its correct).
By example from http://www.two-kings.de/tutorials/dxgraphics/dxgraphics18.html I passing textures with:
ps_pConstantTable.SetInt(m_pD3DDevice, texCountHandle, 0);
for i := 0 to texCount - 1 do begin
tBlp := texture_buf[cx, cy][i];
if tBlp = nil then
break;
m_pD3DDevice.SetTexture(i, tBlp.itex);
ps_pConstantTable.SetInt(m_pD3DDevice, texCountHandle, i);
if i > 0 then begin
// this time, use blending:
m_pD3DDevice.SetTexture(i + 3, AlphaMaps[cx, cy][i]);
end;
end;
so ordinal textures have indices 0-3 and alpha 4-6 (max texCount 4).
The problem is: I can see mesh (terrain) but it is solid black. Am I need something else to set (without shaders it also was black until I assigned materials and light)? Can I pass textures like that? Can I do this with sampler2D as uniform (how)?
Edit: example with sources, shaders, several used textures and alphamaps, vertex data with normals at filebeam http://fbe.am/nm4 added. As small as possible. Also contains DXErr9ab.dll to log errors.
To use texture in pixel shader, you may following below steps
Create texture in your C/C++ file by D3DXCreateTextureFromFile or other functions.
if( FAILED( D3DXCreateTextureFromFile( g_pd3dDevice, "FaceTexture.jpg",
&g_pTexture ) ) )
return E_FAIL;
Declare a D3DXHANDLE and associate it with the texture in your shader file.(you should compile your effect file before this step, effects_ here is a pointer to ID3DXEffect)
texture_handle = effects->GetParameterByName(0, "FaceTexture");
Set the texture in render function
effects_->SetTexture(texture_handle, g_pTexture);
Declare a texture in your shader file
texture FaceTexture;
Declare a sampler in your shader file
// Face texture sampler
sampler FaceTextureSampler = sampler_state
{
Texture = <FaceTexture>;
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;
};
Do sampling in your pixel shader function
float4 BasicPS(OutputVS outputVS) : COLOR
{
float4 Output;
Output = FaceTexture.Sample(FaceTextureSampler, outputVS.texUV);
return Output;
}
If you have DirectX SDK installed, I recommend you to take a look at the sample "BasicHLSL" which has a very basic introduction of Vertex shader and Pixel shader(including texture).

DirectX 10 Light bright at origin?

I'm using Frank Luna's book to learn DirectX 10 but I'm a little confused with some of the lighting I'm getting. I've got a couple of objects, a directional light and a point light that I can move around the scene. My problem is that when I move the point light around, the light moves but gets darker the further it gets from the origin. When at the origin it has intense white light. Why is this, and how can I get it working properly? Thanks.
Here's the code for the point light:
float3 PointLight(SurfaceInfo v, Light L, float3 eyePos)
{
float3 litColor = float3(0.0f, 0.0f, 0.0f);
// The vector from the surface to the light.
float3 lightVec = L.pos - v.pos;
// The distance from surface to light.
float d = length(lightVec);
if( d > L.range )
return float3(0.0f, 0.0f, 0.0f);
// Normalize the light vector.
lightVec /= d;
// Add the ambient light term.
litColor += v.diffuse * L.ambient;
// Add diffuse and specular term, provided the surface is in
// the line of site of the light.
float diffuseFactor = dot(lightVec, v.normal);
[branch]
if( diffuseFactor > 0.0f )
{
float specPower = max(v.spec.a, 1.0f);
float3 toEye = normalize(eyePos - v.pos);
float3 R = reflect(-lightVec, v.normal);
float specFactor = pow(max(dot(R, toEye), 0.0f), specPower);
// diffuse and specular terms
litColor += diffuseFactor * v.diffuse * L.diffuse;
litColor += specFactor * v.spec * L.spec;
}
// attenuate
return litColor / dot(L.att, float3(1.0f, d, d*d));
}
The Effect file:
#include "lighthelper.fx"
#define MaxLights 2
cbuffer cbPerFrame
{
uniform extern Light gLight[MaxLights];
int gLightType;
float3 gEyePosW;
};
bool gSpecularEnabled;
cbuffer cbPerObject
{
float4x4 gWorld;
float4x4 gWVP;
float4x4 gTexMtx;
};
// Nonnumeric values cannot be added to a cbuffer.
Texture2D gDiffuseMap;
Texture2D gSpecMap;
SamplerState gTriLinearSam
{
Filter = MIN_MAG_MIP_LINEAR;
AddressU=Mirror;
AddressV=Mirror;
};
struct VS_IN
{
float3 posL : POSITION;
float3 normalL : NORMAL;
float2 texC : TEXCOORD;
float4 diffuse : DIFFUSE;
float4 spec : SPECULAR;
};
struct VS_OUT
{
float4 posH : SV_POSITION;
float3 posW : POSITION;
float3 normalW : NORMAL;
float2 texC : TEXCOORD;
float4 diffuse : DIFFUSE;
float4 spec : SPECULAR;
};
VS_OUT VS(VS_IN vIn)
{
VS_OUT vOut;
// Transform to world space space.
vOut.posW = mul(float4(vIn.posL, 1.0f), gWorld);
vOut.normalW = mul(float4(vIn.normalL, 0.0f), gWorld);
// Transform to homogeneous clip space.
vOut.posH = mul(float4(vIn.posL, 1.0f), gWVP);
// Output vertex attributes for interpolation across triangle.
vOut.texC = mul(float4(vIn.texC, 0.0f, 1.0f), gTexMtx);
vOut.diffuse = vIn.diffuse;
vOut.spec = vIn.spec;
return vOut;
}
float4 PS(VS_OUT pIn) : SV_Target
{
// Get materials from texture maps.
float4 diffuse = gDiffuseMap.Sample( gTriLinearSam, pIn.texC );
float4 spec = gSpecMap.Sample( gTriLinearSam, pIn.texC );
// Map [0,1] --> [0,256]
spec.a *= 256.0f;
// Interpolating normal can make it not be of unit length so normalize it.
float3 normalW = normalize(pIn.normalW);
// Compute the lit color for this pixel.
SurfaceInfo v = {pIn.posW, normalW, diffuse, spec};
float3 litColor;
for(int i = 0; i < MaxLights; ++i)
{
if( i==0) // Parallel
{
//litColor += ParallelLight(v, gLight[i], gEyePosW);
}
else // Point
{
litColor += PointLight(v, gLight[i], gEyePosW);
}
}
return float4(litColor, diffuse.a);}
technique10 TexTech
{
pass P0
{
SetVertexShader( CompileShader( vs_4_0, VS() ) );
SetGeometryShader( NULL );
SetPixelShader( CompileShader( ps_4_0, PS() ) );
}
}
And the Light defines:
myLight[1].ambient = D3DXCOLOR(0.4f, 0.8f, 0.4f, 1.0f);
myLight[1].diffuse = D3DXCOLOR(1.0f, 1.0f, 1.0f, 1.0f);
myLight[1].specular = D3DXCOLOR(1.0f, 1.0f, 1.0f, 1.0f);
myLight[1].att.x = 0.0f;
myLight[1].att.y = 0.1f;
myLight[1].att.z = 0.0f;
myLight[1].range = 50.0f;

Resources