Struggling with Normalization values when training model - machine-learning

I am trying to train an adversarial patch located at the bottom left corner of the image to cause a misclassification. Currently, I am using these parameters to normalize the CIFAR10 dataset.
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914,0.4822,0.4465),(0.2023,0.1994,0.201))]
This would result in the images having a maximum and minimum value of around 2.55 and -2.55 respectively. However, I'm not sure how to work with this range when training my patch. I struggle between converting the patch from a range of (0,1) to (-2.55,2.55). Any help is appreciated!
My code for training is below: (I don't think its training properly for now)
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
import matplotlib.pyplot as plt
import numpy as np
from torch.autograd import Variable
import torchattacks
import random
import torch.nn.functional as F
dictionary ={
'0':'airplane',
'1':'automobile',
'2':'bird',
'3':'cat',
'4':'deer',
'5':'dog',
'6':'frog',
'7':'horse',
'8':'ship',
'9':'truck',
}
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914,0.4822,0.4465),(0.2023,0.1994,0.201))])
#transform1 = transforms.Compose([transforms.ToTensor()])
normalize = transforms.Normalize((0.4914,0.4822,0.4465),(0.2023,0.1994,0.201))
mean =(0.4914,0.4822,0.4465)
std =(0.2023,0.1994,0.201)
inv_normalize = transforms.Normalize(
mean=[-0.4914/0.2023, -0.4822/0.1994, -0.4465/0.201],
std=[1/0.2023, 1/0.1994, 1/0.201])
batch_size = 1
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=False, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=True, num_workers=2)
model = torch.hub.load("chenyaofo/pytorch-cifar-models", "cifar10_resnet20", pretrained=True)
model = model.cuda()
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
patch = np.random.rand(3,32,32)
model.eval()
def mask_generation(mask_type='rectangle', patch = patch, image_size=(3, 7, 7)):
applied_patch = np.zeros(image_size) #0,1
#patch = torch.tensor(patch)
#padding = (3,3,3,3)
#patch = F.pad(patch, padding)
if mask_type == 'rectangle':
rotation_angle = 0
for i in range(patch.shape[0]):
patch[i] = np.rot90(patch[i], rotation_angle)
x_location , y_location = 25,0
for i in range(patch.shape[0]):
applied_patch[:, x_location:x_location + patch.shape[1], y_location:y_location + patch.shape[2]] = patch
mask = applied_patch.copy()
mask[mask != 0] = 1.0
return patch , applied_patch, mask, x_location, y_location , rotation_angle
def patch_attack(image, applied_patch, mask, target, probability_threshold, model, lr, max_iteration):
applied_patch = torch.from_numpy(applied_patch)
mask = torch.from_numpy(mask)
image = inv_normalize(image)
target_probability, count = 0,0
perturbated_image = torch.mul(mask.type(torch.FloatTensor), applied_patch.type(torch.FloatTensor)) + torch.mul((1 - mask.type(torch.FloatTensor)), image.type(torch.FloatTensor))
perturbated_image = normalize(perturbated_image)
while target_probability < probability_threshold and count < max_iteration:
count += 1
# Optimize the patch
perturbated_image = Variable(perturbated_image.data, requires_grad=True)
per_image = perturbated_image.cuda()
output = model(per_image)
target_log_softmax = torch.nn.functional.log_softmax(output, dim=1)[0][target]
target_log_softmax.backward()
patch_grad = perturbated_image.grad.clone().cpu()
applied_patch = (lr * patch_grad) + applied_patch.type(torch.FloatTensor)
applied_patch = torch.clamp(applied_patch,0,1)
perturbated_image.grad.data.zero_()
# Test the patch
perturbated_image = torch.mul(mask.type(torch.FloatTensor), applied_patch.type(torch.FloatTensor)) + torch.mul((1-mask.type(torch.FloatTensor)), image.type(torch.FloatTensor))
perturbated_image = normalize(perturbated_image)
perturbated_image = perturbated_image.cuda()
output = model(perturbated_image)
target_probability = torch.nn.functional.softmax(output, dim=1).data[0][target]
perturbated_image = perturbated_image.detach().cpu().numpy()
applied_patch = applied_patch.cpu().numpy()
return perturbated_image, applied_patch
def test_patch(patch_type, target, patch, test_loader, model):
test_total, test_actual_total, test_success = 0, 0, 0
for (image, label) in test_loader:
test_total += label.shape[0]
assert image.shape[0] == 1, 'Only one picture should be loaded each time.'
image = image.cuda() #-3,3
label = label.cuda()
output = model(image)
_, predicted = torch.max(output.data, 1)
if predicted[0] != label and predicted[0].data.cpu().numpy() != target:
test_actual_total += 1
patch ,applied_patch, mask, x_location, y_location = mask_generation('rectangle', patch, (3, 32, 32))
applied_patch = torch.from_numpy(applied_patch)
mask = torch.from_numpy(mask)
mask = normalize(mask)
applied_patch = normalize(applied_patch)
perturbated_image = torch.mul(mask.type(torch.FloatTensor), applied_patch.type(torch.FloatTensor)) + torch.mul((1 - mask.type(torch.FloatTensor)), image.type(torch.FloatTensor))
perturbated_image = perturbated_image.cuda() #-3,3
output = model(perturbated_image)
_, predicted = torch.max(output.data, 1)
if predicted[0].data.cpu().numpy() == target:
test_success += 1
return test_success / test_actual_total
#training parameters
epochs = 1
target = 0
probability_threshold = 0.99
lr = 1/255
max_iteration = 1
runs = 0
for epoch in range(epochs):
train_total, train_actual_total, train_success = 0, 0, 0
for (image, label) in trainloader:
runs+=1
assert image.shape[0] == 1
image = image.cuda()
label = label.cuda()
train_total += label.shape[0]
output = model(image)
_, predicted = torch.max(output.data, 1)
if predicted[0] != label or predicted[0].data.cpu().numpy() != target:
train_actual_total += 1
patch , applied_patch, mask, x_location, y_location ,rotation_angle = mask_generation('rectangle', patch, (3, 32, 32))
perturbated_image, applied_patch = patch_attack(image, applied_patch, mask, target, probability_threshold, model, lr,max_iteration)
perturbated_image = torch.from_numpy(perturbated_image).cuda()
output = model(perturbated_image)
_, predicted = torch.max(output.data, 1)
if predicted[0].data.cpu().numpy() == target:
train_success += 1
patch = applied_patch[0][:, x_location:x_location + patch.shape[1], y_location:y_location + patch.shape[2]]
patch = np.array(patch)

To convert a number x in the range [0,1] to the range [-2.55,2.55]:
Multiply by size of final range / size of original range or in this case 5.1/1.0.
Add min of final range - min of starting range to the result, so in this case -2.55+0 = 0.

Related

How to deal with big dataset when using pyG?

I am a beginer learning to using torch_geometric to build my GNN models. I refered the sample of the pyG example of node classification and build my own dataset, however, I tried to use my GPU to run the code and it tells me that it run out of memory, maybe my dataset is too large to allocate the GPU memory? I don't know. I shared an machine of 8 A100 with my classmates. Could you please give me some suggestions, thank you!
from torch_geometric.nn import GATConv,GCNConv
from torch_geometric.data import Dataset,DataLoader,HeteroData,Data
import torch.nn as nn
from torch_geometric.nn import DataParallel
from torch_geometric.loader import DataListLoader
import torch.nn.functional as F
import torch
import pandas as pd
from transformers import BertTokenizer,BertModel
import pickle
import time
from tqdm import tqdm
from numba import jit
import json
from torch.optim import lr_scheduler
import matplotlib.pyplot as plt
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "4,5,6,7"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
plt.grid(True)
plt.grid(color='gray',
linestyle='--',
linewidth=1,
alpha=0.3)
begin = time.time()
punctuation = "!#$%&'\(\)-*+,-./:;<=>?#\\\[\]^_`{|}~():;,。【】·、“”‘’《》\"%……——·"
def dataCleanifier(s):
for i in punctuation:
s.replace(i," ")
s = s.replace(" "," ")
s = s.replace("\n","")
return s
class BertClassifier(nn.Module):
def __init__(self,bertType:str,max_length,tag_size):
super(BertClassifier,self).__init__()
self.bertType = bertType
self.tokenizer = BertTokenizer.from_pretrained(self.bertType)
self.encoder = BertModel.from_pretrained(self.bertType)
self.outputDim = self.encoder.pooler.dense.out_features
self.max_length = max_length
self.tag_size = tag_size
self.dropout = nn.Dropout(0.1)
self.activation = nn.LeakyReLU(0.1)
self.convs = nn.ModuleList(
[nn.Conv2d(1, 512, (k, self.outputDim)) for k in (2,3,4)])
self.fc_cnn = nn.Linear(512 * len((2,3,4)), self.tag_size)
def conv_and_pool(self, x, conv):
x = F.relu(conv(x)).squeeze(3)
x = F.max_pool1d(x, x.size(2)).squeeze(2)
return x
def forward(self,x):
x = self.tokenizer.batch_encode_plus(x,return_tensors="pt",max_length=self.max_length,truncation=True,padding="max_length")
attention = x["attention_mask"]
x = x["input_ids"]
x = x.cuda(2)
x = self.encoder(x,attention_mask=attention.cuda(2))['last_hidden_state'][:]
x = x.unsqueeze(1)
encoded = torch.cat([self.conv_and_pool(x,conv) for conv in self.convs],1)
x = self.fc_cnn(encoded)
x = self.activation(x)
# x = F.softmax(x,dim=1)
return x,encoded
class ContrastiveLoss(nn.Module):
def __init__(self):
super(ContrastiveLoss, self).__init__()
def forward(self,representations,label,y_hat):
n = label.shape[0]
T = 0.5
similarity_matrix = F.cosine_similarity(representations.unsqueeze(1), representations.unsqueeze(0), dim=2)
mask = torch.ones_like(similarity_matrix) * (label.expand(n, n).eq(label.expand(n, n).t()))
mask_no_sim = torch.ones_like(mask) - mask
mask_dui_jiao_0 = torch.ones(n ,n) - torch.eye(n, n )
similarity_matrix = torch.exp(similarity_matrix/T)
similarity_matrix = similarity_matrix*mask_dui_jiao_0
sim = mask*similarity_matrix
no_sim = similarity_matrix - sim
no_sim_sum = torch.sum(no_sim , dim=1)
no_sim_sum_expend = no_sim_sum.repeat(n, 1).T
sim_sum = sim + no_sim_sum_expend
loss = torch.div(sim , sim_sum)
loss = mask_no_sim + loss + torch.eye(n, n )
#接下来就是算一个批次中的loss了
loss = -torch.log(loss) #求-log
loss = torch.sum(torch.sum(loss, dim=1) )/(2*n)+nn.CrossEntropyLoss()(y_hat,label)
return loss
class GAT(nn.Module):
def __init__(self, hidden_channels) -> None:
super().__init__()
self.conv1 = GATConv(data.num_features,hidden_channels)
self.conv2 = GATConv(hidden_channels,9)
self.activation = nn.ReLU()
def forward(self,x,edge_index):
x = self.conv1(x,edge_index)
x = self.activation(x)
# print(x)
# x = F.dropout(x,p=0.2)
x = self.conv2(x,edge_index)
return x
x=None
y=None
edge_index = None
train_mask = None
with open("X.pkl","rb") as f1:
x = pickle.load(f1)
with open("Y.pkl","rb") as f2:
y = pickle.load(f2)
y = y.long()
with open("edge_index.pkl","rb") as f3:
edge_index = pickle.load(f3)
# print(edge_index.shape)
with open("train_mask.pkl","rb") as f4:
train_mask = pickle.load(f4)
data = Data(x=x,y=y,edge_index=edge_index)
data.train_mask = train_mask
model = GAT(hidden_channels=32)
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
scheduler = lr_scheduler.StepLR(optimizer, 100, 0.8)
criterion = ContrastiveLoss()
def train():
model.train()
optimizer.zero_grad() # Clear gradients.
out = model(data.x,data.edge_index) # Perform a single forward pass.
loss = criterion(data.x[data.train_mask], data.y[data.train_mask],out[data.train_mask]) # Compute the loss solely based on the training nodes.
loss.backward() # Derive gradients.
optimizer.step() # Update parameters based on gradients.
return loss
def test():
model.eval()
out = model(data.x, data.edge_index)
pred = out.argmax(dim=1) # Use the class with highest probability.
test_correct = pred[data.train_mask] == data.y[data.train_mask] # Check against ground-truth labels.
test_acc = int(test_correct.sum()) / int(data.train_mask.sum()) # Derive ratio of correct predictions.
return test_acc
accs = []
for epoch in range(1, 1025):
loss = train()
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}',end=" ")
acc = test()
print("acc:",acc)
accs.append(acc)
scheduler.step()
plt.plot(range(len(accs)),accs)
print(time.time()-begin)
with open("./accs_gat_GCL.pkl","wb") as f1:
pickle.dump(accs,f1)
plt.savefig("./res_GAT_GCL.png",dpi=600)
I have tried to use DataPararel to use multiple GPU to load my model and dataset but failed.

setting up hyper parameters for LSTM

This is our code can you please tell if LSTM can be used? and what how do we see if prediction is accurate as this code is predicting right the values of csv itself, but unsure about forecasting part. It is forecasting future but unreliably.
This is our data it has missing dates as well. The data ends at 1-Dec-2021
import pandas as pd
import flask
import numpy as np
import keras
import matplotlib.pyplot as plt
import tensorflow as tf
import plotly.graph_objects as go
from keras.preprocessing.sequence import TimeseriesGenerator
filename = "china cotton import concatinated.csv"
df = pd.read_csv(filename)
print(df.info())
df['date'] = pd.to_datetime(df['date'])
#df.set_index(df['date'], inplace=True,)
df.set_axis(df['date'], inplace=True)
df.drop(columns=['CottonChina importFC Index MUS Cents/Lb', 'CottonChina importFC Index LUS Cents/Lb', 'CottonChinadomestic3128BUSCents/Lb', 'CottonChina domestic2227BUS Cents/Lb','CottonChina domestic2129BUS Cents/Lb','CottonChina importUSD1 year = 100','CottonChina domesticUSD1 year = 100'], inplace=True)
close_data = df['CottonChina importFC Index SUS Cents/Lb'].values
close_data = close_data.reshape((-1,1))
split_percent = 0.80
split = int(split_percent*len(close_data))
close_train = close_data[:split]
close_test = close_data[split:]
date_train = df['date'][:split]
date_test = df['date'][split:]
print(len(close_train))
print(len(close_test))
look_back = 15
train_generator = TimeseriesGenerator(close_train, close_train, length=look_back, batch_size=20)
test_generator = TimeseriesGenerator(close_test, close_test, length=look_back, batch_size=1)
from keras.models import Sequential
from keras.layers import LSTM, Dense
model = Sequential()
model.add(
LSTM(10,
activation='relu', return_sequences=True,
input_shape=(look_back,1))
)
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
num_epochs = 25
prediction = model.predict_generator(test_generator)
close_train = close_train.reshape((-1))
close_test = close_test.reshape((-1))
prediction = prediction.reshape((-1))
"""trace1 = go.Scatter(
x = date_train,
y = close_train,
mode = 'lines',
name = 'Data'
)
trace2 = go.Scatter(
x = date_test,
y = prediction,
mode = 'lines',
name = 'Prediction'
)
trace3 = go.Scatter(
x = date_test,
y = close_test,
mode='lines',
name = 'Ground Truth'
)
layout = go.Layout(
title = "Google Stock",
xaxis = {'title' : "Date"},
yaxis = {'title' : "Close"}
) """
"""fig = go.Figure(data=[trace1, trace2, trace3], layout=layout)
fig.show()"""
close_data = close_data.reshape((-1))
def predict(num_prediction, model):
prediction_list = close_data[-look_back:]
for _ in range(num_prediction):
x = prediction_list[-look_back:]
x = x.reshape((1, look_back, 1))
out = model.predict(x)[0][0]
prediction_list = np.append(prediction_list, out)
prediction_list = prediction_list[look_back-1:]
return prediction_list
def predict_dates(num_prediction):
last_date = df['date'].values[-1]
prediction_dates = pd.date_range(last_date, periods=num_prediction+1).tolist()
return prediction_dates
num_prediction = 30
forecast = predict(num_prediction, model)
forecast_dates = predict_dates(num_prediction)
trace1 = go.Scatter(
x = date_train,
y = close_train,
mode = 'lines',
name = 'Data'
)
trace2 = go.Scatter(
x = forecast_dates,
y = forecast,
mode = 'lines',
name = 'Prediction'
)
trace3 = go.Scatter(
x = date_test,
y = close_test,
mode='lines',
name = 'Ground Truth')
layout = go.Layout(
title = "Future Prediction",
xaxis = {'title' : "Date"},
yaxis = {'title' : "Close"}
)
fig = go.Figure(data=[trace1, trace2,trace3], layout=layout)
fig.write_html('first_figure.html',auto_open=True)
This is the graph plotted after ran the code. It has negative values of prices and prices are small as compare to test and train data.

very large value of loss in AlexNet

Actually I am using AlexNet to classify my images in 2 groups , I am feeding images to the model in a batch of 60 images and the loss which I am getting after every batch is 6 to 7 digits large (for ex. 1428529.0) , here I am confused that why my loss is such a large value because on MNIST dataset the loss which I got was very small as compared to this. Can anyone explain me why I am getting such a large loss value.
Thanks in advance ;-)
Here is the code :-
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import os
img_size = 227
num_channels = 1
img_flat_size = img_size * img_size
num_classes = 2
drop = 0.5
x = tf.placeholder(tf.float32,[None,img_flat_size])
y = tf.placeholder(tf.float32,[None,num_classes])
drop_p = tf.placeholder(tf.float32)
def new_weight(shape):
return tf.Variable(tf.random_normal(shape))
def new_bias(size):
return tf.Variable(tf.random_normal(size))
def new_conv(x,num_input_channels,filter_size,num_filters,stride,padd="SAME"):
shape = [filter_size,filter_size,num_input_channels,num_filters]
weight = new_weight(shape)
bias = new_bias([num_filters])
conv = tf.nn.conv2d(x,weight,strides=[1,stride,stride,1],padding=padd)
conv = tf.nn.bias_add(conv,bias)
return tf.nn.relu(conv)
def new_max_pool(x,k,stride):
max_pool = tf.nn.max_pool(x,ksize=[1,k,k,1],strides=[1,stride,stride,1],padding="VALID")
return max_pool
def flatten_layer(layer):
layer_shape = layer.get_shape()
num_features = layer_shape[1:4].num_elements()
flat_layer = tf.reshape(layer,[-1,num_features])
return flat_layer,num_features
def new_fc_layer(x,num_input,num_output):
weight = new_weight([num_input,num_output])
bias = new_bias([num_output])
fc_layer = tf.matmul(x,weight) + bias
return fc_layer
def lrn(x, radius, alpha, beta, bias=1.0):
"""Create a local response normalization layer."""
return tf.nn.local_response_normalization(x, depth_radius=radius,
alpha=alpha, beta=beta,
bias=bias)
def AlexNet(x,drop,img_size):
x = tf.reshape(x,shape=[-1,img_size,img_size,1])
conv1 = new_conv(x,num_channels,11,96,4,"VALID")
max_pool1 = new_max_pool(conv1,3,2)
norm1 = lrn(max_pool1, 2, 2e-05, 0.75)
conv2 = new_conv(norm1,96,5,256,1)
max_pool2 = new_max_pool(conv2,3,2)
norm2 = lrn(max_pool2, 2, 2e-05, 0.75)
conv3 = new_conv(norm2,256,3,384,1)
conv4 = new_conv(conv3,384,3,384,1)
conv5 = new_conv(conv4,384,3,256,1)
max_pool3 = new_max_pool(conv5,3,2)
layer , num_features = flatten_layer(max_pool3)
fc1 = new_fc_layer(layer,num_features,4096)
fc1 = tf.nn.relu(fc1)
fc1 = tf.nn.dropout(fc1,drop)
fc2 = new_fc_layer(fc1,4096,4096)
fc2 = tf.nn.relu(fc2)
fc2 = tf.nn.dropout(fc2,drop)
out = new_fc_layer(fc2,4096,2)
return out #, tf.nn.softmax(out)
def read_and_decode(tfrecords_file, batch_size):
'''read and decode tfrecord file, generate (image, label) batches
Args:
tfrecords_file: the directory of tfrecord file
batch_size: number of images in each batch
Returns:
image: 4D tensor - [batch_size, width, height, channel]
label: 1D tensor - [batch_size]
'''
# make an input queue from the tfrecord file
filename_queue = tf.train.string_input_producer([tfrecords_file])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
img_features = tf.parse_single_example(
serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'image_raw': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(img_features['image_raw'], tf.uint8)
##########################################################
# you can put data augmentation here, I didn't use it
##########################################################
# all the images of notMNIST are 28*28, you need to change the image size if you use other dataset.
image = tf.reshape(image, [227, 227])
label = tf.cast(img_features['label'], tf.int32)
image_batch, label_batch = tf.train.batch([image, label],
batch_size= batch_size,
num_threads= 1,
capacity = 6000)
return tf.reshape(image_batch,[batch_size,227*227*1]), tf.reshape(label_batch, [batch_size])
pred = AlexNet(x,drop_p,img_size) #pred
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
optimiser = tf.train.AdamOptimizer(learning_rate = 0.001).minimize(loss)
correct_pred = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))
cost = tf.summary.scalar('loss',loss)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
merge_summary = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter('./AlexNet',graph = tf.get_default_graph())
tf_record_file = 'train.tfrecords'
x_val ,y_val = read_and_decode(tf_record_file,20)
y_val = tf.one_hot(y_val,depth=2,on_value=1,off_value=0)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
x_val = x_val.eval()
y_val = y_val.eval()
epoch = 2
for i in range(epoch):
_, summary= sess.run([optimiser,merge_summary],feed_dict={x:x_val,y:y_val,drop_p:drop})
summary_writer.add_summary(summary,i)
loss_a,accu = sess.run([loss,accuracy],feed_dict={x:x_val,y:y_val,drop_p:1.0})
print "Epoch "+str(i+1) +', Minibatch Loss = '+ \
"{:.6f}".format(loss_a) + ', Training Accuracy = '+ \
'{:.5f}'.format(accu)
print "Optimization Finished!"
tf_record_file1 = 'test.tfrecords'
x_v ,y_v = read_and_decode(tf_record_file1,10)
y_v = tf.one_hot(y_v,depth=2,on_value=1,off_value=0)
coord1 = tf.train.Coordinator()
threads1 = tf.train.start_queue_runners(coord=coord1)
x_v = sess.run(x_v)
y_v = sess.run(y_v)
print "Testing Accuracy : "
print sess.run(accuracy,feed_dict={x:x_v,y:y_v,drop_p:1.0})
coord.request_stop()
coord.join(threads)
coord1.request_stop()
coord1.join(threads1)
Take a look a what a confusion matrix is. It is a performance evaluator. In addition, you should compare your precision versus your recall. Precision is the accuracy of your positive predictions and recall is the ratio of positive instances that are correctly detected by the classifier. By combining both precision and recall, you get the F_1 score which is keep in evaluating the problems of your model.
I would suggest you pick up the text Hands-On Machine Learning with Scikit-Learn and TensorFlow. It is a truly comprehensive book and covers what I describe above in more detail.

How to use multiple GPUs effectively when training deep networks?

I am using a machine which has 2 GPUs Titan Black to train my deep learning model which has 3 layers (3x3, 3x3 and 5x5).
The training runs pretty well but when I watch nvidia-smi (watch every 1 sec), I realized that my program uses only one GPU for computation, the second one always 0% even when the first one reach 100%.
I am trying to use tf.device to assign specific tasks for each of them but then they run one-by-one, not in parallel, and the total time was even increased, not reduced (I guess because 2 GPUs had to exchange values with each other)
Below is my program. It is quite messy, maybe you just need to pay attention at the graph where I use tf.device is enough...
Thank you so much!
import tensorflow as tf
import numpy as np
from six.moves import cPickle as pickle
import matplotlib.pyplot as plt
from os import listdir, sys
from os.path import isfile, join
from time import gmtime, strftime
import time
def validatePath(path):
path = path.replace("\\","/")
if (path[len(path)-1] != "/"):
path = path + "/"
return path
hidden_size_default = np.array([16, 32, 64, 32])
cnn1_default = 3
cnn2_default = 3
cnn3_default = 5
SIZE_BATCH_VALID = 200
input_path = 'ARCHIVES-sub-dataset'
output_path = 'ARCHIVES-model'
log_address = "trainlog.txt"
tf.app.flags.DEFINE_integer('h0', hidden_size_default[0], 'Size of hidden layer 0th')
tf.app.flags.DEFINE_integer('h1', hidden_size_default[1], 'Size of hidden layer 1st')
tf.app.flags.DEFINE_integer('h2', hidden_size_default[2], 'Size of hidden layer 2nd')
tf.app.flags.DEFINE_integer('h3', hidden_size_default[3], 'Size of hidden layer 3rd')
tf.app.flags.DEFINE_integer('k1', cnn1_default , 'Size of kernel 1st')
tf.app.flags.DEFINE_integer('k2', cnn2_default , 'Size of kernel 2nd')
tf.app.flags.DEFINE_integer('k3', cnn3_default , 'Size of kernel 3rd')
tf.app.flags.DEFINE_string('input_path', input_path, 'The parent directory which contains 2 directories: dataset and label')
tf.app.flags.DEFINE_string('output_path', output_path, 'The directory which will store models (you have to create)')
tf.app.flags.DEFINE_string('log_address', log_address, 'The file name which will store the log')
FLAGS = tf.app.flags.FLAGS
load_path = FLAGS.input_path
save_model_path = FLAGS.output_path
log_addr = FLAGS.log_address
load_path = validatePath(load_path)
save_model_path = validatePath(save_model_path)
cnn1 = FLAGS.k1
cnn2 = FLAGS.k2
cnn3 = FLAGS.k3
hidden_size = np.array([FLAGS.h0, FLAGS.h1, FLAGS.h2, FLAGS.h3])
# Shuffle the dataset and its label
def randomize(dataset, labels):
permutation = np.random.permutation(labels.shape[0])
shuffled_dataset = dataset[permutation,:]
shuffled_labels = labels[permutation]
return shuffled_dataset, shuffled_labels
def writemyfile(mystring):
with open(log_addr, "a") as myfile:
myfile.write(str(mystring + "\n"))
num_labels = 5
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))/ predictions.shape[0])
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def DivideSets(input_set):
length_set = input_set.shape[0]
index_70 = int(length_set*0.7)
index_90 = int(length_set*0.9)
set_train = input_set[0:index_70]
set_valid = input_set[index_70:index_90]
set_test = input_set[index_90:length_set]
return np.float32(set_train), np.float32(set_valid), np.float32(set_test)
# from 1-value labels to 5 values of (0 and 1)
def LabelReconstruct(label_set):
label_set = label_set.astype(int)
new_label_set = np.zeros(shape=(len(label_set),num_labels))
for i in range(len(label_set)):
new_label_set[i][label_set[i]] = 1
return new_label_set.astype(int)
def LoadDataSet(load_path):
list_data = [f for f in listdir(load_path + "dataset/") if isfile(join(load_path + "dataset/", f))]
list_label = [f for f in listdir(load_path + "label/") if isfile(join(load_path + "dataset/", f))]
if list_data.sort() == list_label.sort():
return list_data
else:
print("data and labels are not suitable")
return 0
# load, randomize, normalize images and reconstruct labels
def PrepareData(*arg):
filename = arg[0]
loaded_dataset = pickle.load( open( load_path + "dataset/" + filename, "rb" ))
loaded_labels = pickle.load( open( load_path + "label/" + filename, "rb" ))
if len(arg) == 1:
datasize = len(loaded_labels)
elif len(arg) == 2:
datasize = int(arg[1])
else:
print("not more than 2 arguments please!")
dataset_full,labels_full = randomize(loaded_dataset[0:datasize], loaded_labels[0:datasize])
return NormalizeData(dataset_full), LabelReconstruct(labels_full)
def NormalizeData(dataset):
dataset = dataset - (dataset.mean())
dataset = dataset / (dataset.std())
return dataset
### LOAD DATA
listfiles = LoadDataSet(load_path)
# divide
listfiles_train = listfiles[0:15]
listfiles_valid = listfiles[15:25]
listfiles_test = listfiles[25:len(listfiles)]
graphCNN = tf.Graph()
with graphCNN.as_default():
with tf.device('/gpu:0'):
x = tf.placeholder(tf.float32, shape=(None, 224,224,3)) # X
y_ = tf.placeholder(tf.float32, shape=(None, num_labels)) # Y_
dropout = tf.placeholder(tf.float32)
if dropout == 1.0:
keep_prob = tf.constant([0.2, 0.3, 0.5], dtype=tf.float32)
else:
keep_prob = tf.constant([1.0, 1.0, 1.0], dtype=tf.float32)
weights_1 = weight_variable([cnn1,cnn1,3, hidden_size[0]])
biases_1 = bias_variable([hidden_size[0]])
weights_2 = weight_variable([cnn2,cnn2,hidden_size[0], hidden_size[1]])
biases_2 = bias_variable([hidden_size[1]])
weights_3 = weight_variable([cnn3,cnn3,hidden_size[1], hidden_size[2]])
biases_3 = bias_variable([hidden_size[2]])
weights_4 = weight_variable([56 * 56 * hidden_size[2], hidden_size[3]])
biases_4 = bias_variable([hidden_size[3]])
weights_5 = weight_variable([hidden_size[3], num_labels])
biases_5 = bias_variable([num_labels])
def model(data):
with tf.device('/gpu:1'):
train_hidden_1 = tf.nn.relu(conv2d(data, weights_1) + biases_1)
train_hidden_2 = max_pool_2x2(tf.nn.relu(conv2d(train_hidden_1, weights_2) + biases_2))
train_hidden_2_drop = tf.nn.dropout(train_hidden_2, keep_prob[0])
train_hidden_3 = max_pool_2x2(tf.nn.relu(conv2d(train_hidden_2_drop, weights_3) + biases_3))
train_hidden_3_drop = tf.nn.dropout(train_hidden_3, keep_prob[1])
train_hidden_3_drop = tf.reshape(train_hidden_3_drop,[-1, 56 * 56 * hidden_size[2]])
train_hidden_4 = tf.nn.relu(tf.matmul(train_hidden_3_drop, weights_4) + biases_4)
train_hidden_4_drop = tf.nn.dropout(train_hidden_4, keep_prob[2])
logits = tf.matmul(train_hidden_4_drop, weights_5) + biases_5
return logits
t_train_labels = tf.argmax(y_, 1) # From one-hot (one and zeros) vectors to values
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=model(x), labels=t_train_labels))
optimizer = tf.train.AdamOptimizer(0.01).minimize(loss)
y = tf.nn.softmax(model(x))
### RUNNING
print("log address: %s" % (log_addr))
#num_steps = 10001
times_repeat = 20 # number of epochs
batch_size = 100
with tf.Session(graph=graphCNN,config=tf.ConfigProto(log_device_placement=True)) as session:
tf.initialize_all_variables().run()
saver = tf.train.Saver(max_to_keep=0)
writemyfile("---ARCHIVES_M1----")
mytime = strftime("%Y-%m-%d %H:%M:%S", time.localtime())
writemyfile(str("\nTime: %s \nLayers: %d,%d,%d \epochs: %d" % (mytime,cnn1,cnn2,cnn3,times_repeat)))
writemyfile("Train files:" + str(listfiles_train))
writemyfile("Valid files:" + str(listfiles_valid))
writemyfile("Test files:" + str(listfiles_test))
print("Model will be saved in file: %s" % save_model_path)
writemyfile(str("Model will be saved in file: %s" % save_model_path))
### TRAINING & VALIDATION
valid_accuracies_epochs = np.array([])
for time_repeat in range(times_repeat):
print("- time_repeat:",time_repeat)
writemyfile("- time_repeat:"+str(time_repeat))
for file_train in listfiles_train:
file_train_id = int(file_train[0:len(file_train)-4])
time_start_this_file = time.time()
#LOAD DATA
print("- - file:",file_train_id, end=' ')
writemyfile("- - file:" + str(file_train_id))
Data_train, Label_train= PrepareData(file_train)
for step in range(0,len(Data_train)-batch_size,batch_size):
batch_data = Data_train[step:step+batch_size]
batch_labels = Label_train[step:step+batch_size]
feed_dict = {x : batch_data, y_ : batch_labels, dropout: 1.0}
opti, l, predictions = session.run([optimizer, loss, y], feed_dict=feed_dict)
train_accuracies = np.array([])
for index_tr_accu in range(0,len(Data_train)-SIZE_BATCH_VALID,SIZE_BATCH_VALID):
current_predictions = y.eval(feed_dict={x: Data_train[index_tr_accu:index_tr_accu+SIZE_BATCH_VALID],dropout: 0.0})
current_accuracy = accuracy(current_predictions, Label_train[index_tr_accu:index_tr_accu+SIZE_BATCH_VALID])
train_accuracies = np.r_[train_accuracies,current_accuracy]
train_accuracy = train_accuracies.mean()
print("batch accu: %.2f%%" %(train_accuracy),end=" | ")
writemyfile("batch accu: %.2f%%" %(train_accuracy))
time_done_this_file = time.time() - time_start_this_file
print("time: %.2fs" % (time_done_this_file))
writemyfile("time: %.2fs" % (time_done_this_file))
# save model
model_addr = save_model_path + "model335" + "-epoch-" + str(time_repeat) + ".ckpt"
save_path = saver.save(session, model_addr,) # max_to_keep default was 5
mytime = strftime("%Y-%m-%d %H:%M:%S", time.localtime())
print("epoch finished at %s \n model address: %s" % (mytime,model_addr))
writemyfile("epoch finished at %s \n model address: %s" % (mytime,model_addr))
# validation
valid_accuracies = np.array([])
for file_valid in listfiles_valid:
file_valid_id = int(file_valid[0:len(file_valid)-4])
Data_valid, Label_valid = PrepareData(file_valid)
for index_vl_accu in range(0,len(Data_valid)-SIZE_BATCH_VALID,SIZE_BATCH_VALID):
current_predictions = y.eval(feed_dict={x: Data_valid[index_vl_accu:index_vl_accu+SIZE_BATCH_VALID],dropout: 0.0})
current_accuracy = accuracy(current_predictions, Label_valid[index_vl_accu:index_vl_accu+SIZE_BATCH_VALID])
valid_accuracies = np.r_[valid_accuracies,current_accuracy]
valid_accuracy = valid_accuracies.mean()
print("epoch %d - valid accu: %.2f%%" %(time_repeat,valid_accuracy))
writemyfile("epoch %d - valid accu: %.2f%%" %(time_repeat,valid_accuracy))
valid_accuracies_epochs = np.hstack([valid_accuracies_epochs,valid_accuracy])
print('Done!!')
writemyfile(str('Done!!'))
session.close()
Update: I found cifar10_multi_gpu_train.py seems to be a good example for training with multi GPUs, but honestly I don't know how to apply on my case.
I think you need to change
def model(data):
with tf.device('/gpu:1'):
to:
def model(data):
for d in ['/gpu:0', '/gpu:1']:
with tf.device(d):
and ditch the line with tf.device('/gpu:0'):
Since at the first with tf.device... you are only doing initiation
of variables and then you are resetting your devices with the next with tf.device.
Let me know if this works since I can't test it.

Language Modelling with RNN and LSTM Cell in Tensorflow

My RNN for language modelling is predicting only "the" "and" and "unknown" what's wrong with my code?
Here I define the hyper parameters:
num_epochs = 300
total_series_length = len(uniqueSentence) - 4
truncated_backprop_length = 30
state_size = 100
num_classes = NUM_MEANINGFUL + 1
echo_step = 1
batch_size = 32
vocab_length = len(decoder)
num_batches = total_series_length//batch_size//truncated_backprop_length
learning_rate = 0.01
old_perplexity = 0
Here I generate the data (my input is given by word embeddings long 100 calculated with Word2Vec):
def generateData():
uniqueSent = uniqueSentence[0 : len(uniqueSentence) - 4]
x_tr = np.array([model_ted[word] for words in uniqueSent])
#Roll array elements along a given axis.
#Elements that roll beyond the last position are re-introduced at the first.
x_tr = x_tr.reshape((100, batch_size, -1)) # The first index changing slowest, subseries as rows
x = x_tr.transpose((1, 2, 0))
print("hi")
new_y = indexList[1: len(indexList)- 4]
new_y.append(indexList[len(indexList)-3])
y = np.array(new_y)
print(len(y))
y = y.reshape((batch_size, -1))
return (x, y)
Define the placeholders:
batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length, 100])
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])
W = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32)
b = tf.Variable(np.zeros((batch_size, num_classes)), dtype=tf.float32)
W2 = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32)
b2 = tf.Variable(np.zeros((batch_size, num_classes)), dtype=tf.float32)
Inputs and desired outputs:
labels_series = tf.transpose(batchY_placeholder)
labels_series = tf.unstack(batchY_placeholder, axis=1)
inputs_series = batchX_placeholder
Forward pass:
from tensorflow.contrib.rnn.python.ops import core_rnn_cell_impl
print(tf.__version__)
#cell = tf.contrib.rnn.BasicRNNCell(state_size)
cell = tf.contrib.rnn.BasicLSTMCell(state_size, state_is_tuple = False)
print(cell.state_size)
init_state = tf.zeros([batch_size, cell.state_size])
outputs, current_state = tf.nn.dynamic_rnn(cell, inputs_series, initial_state = init_state)
iterable_outputs = tf.unstack(outputs, axis = 1)
logits_series = [tf.matmul(state, W2) + b2 for state in iterable_outputs] #Broadcasted addition
predictions_series = [tf.nn.softmax(logits) for logits in logits_series]
losses = [tf.losses.sparse_softmax_cross_entropy(labels, logits)
for logits, labels in zip(logits_series, labels_series)]
total_loss = tf.add_n(losses)
train_step = tf.train.AdamOptimizer(learning_rate).minimize(total_loss)
x,y = generateData()
del(model_ted)
Training:
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
sess.run(tf.initialize_all_variables())
loss_list = []
print("start")
_current_state = np.zeros((batch_size, 2*state_size))
#avevo genrateData fuori e -currentstate dentro
for epoch_idx in range(num_epochs):
print("New data, epoch", epoch_idx)
for batch_idx in range(num_batches):
start_idx = batch_idx * truncated_backprop_length
end_idx = start_idx + truncated_backprop_length
batchX = x[:,start_idx:end_idx,:]
batchY = y[:,start_idx:end_idx]
_total_loss, _train_step, _current_state, _predictions_series = sess.run(
[total_loss, train_step, current_state, predictions_series],
feed_dict={
batchX_placeholder:batchX,
batchY_placeholder:batchY,
init_state:_current_state
})
loss_list.append(_total_loss)
del(batchX)
del(batchY)
perplexity = 2 ** (_total_loss/truncated_backprop_length )
print(perplexity)
del(perplexity)
_predictions_series = np.array(_predictions_series)
pr = _predictions_series.transpose([1, 0, 2])
pr_ind = []
for line in pr[0]:
pr_ind.append(np.argmax(line))
for index in pr_ind:
print(decoder[index], end = " " )
del(pr_ind)
print("\n learning rate: ", end = " ")
print(learning_rate)

Resources