Setting unique properties per spooler in uwsgi - uwsgi

We have an application where we'd want to use uwsgi spoolers to queue up our long running tasks. There are 2 categories of such tasks:
Ones which are not memory intensive and usually finish within a minute
Ones which require a lot of memory, and also take 10s of minutes to finish.
We'd like to maintain 2 queues, and this is possible by adding 2 spoolers in the ini. However, we'd also like a different number of spooler processes to be spun up for the two queues. Spooler-1 could have a higher number of processes spun up (~10) due to its lower memory footprint, however, spooler-2 HAS to be limited to just 5 processes because we have limited memory. Is there a way to specify the number of processes per queue?
[uwsgi]
...
spooler=/tasks/spooler-1 ; Non-memory intensive
spooler=/tasks/spooler-2 ; Memory intensive
spooler-processes=10 ; This is applied across both spoolers. I'd like this to be a per-spooler config
...

Related

How to pick proper number of threads, workers, processes for Dask when running in an ephemeral environment as single machine and cluster

Our company is currently leveraging prefect.io for data workflows (ELT, report generation, ML, etc). We have just started adding the ability to do parallel task execution, which is powered by Dask. Our flows are executed using ephemeral AWS Fargate containers, which will use Dask LocalCluster with a certain number of workers, threads, processes passed into the LocalCluster object.
Our journey on Dask will look very much like this:
Continue using single machine LocalCluster until we out grow max cpu/memory allowed
When we out grow a single container, spawn additional worker containers on the initial container (a la dask-kubernetes) and join them to the LocalCluster.
We're currently starting with containers that have 256 cpu(.25 vCPU) and 512 memory and pinning the LocalCluster to 1 n_workers and 3 threads_per_worker to get a reasonable amount of parallelism. However, this really is guess work. 1 n_workers since its a machine with less than 1 vcpu and 3 threads because that doesn't sound crazy to me based on my previous experience running other python based applications in Fargate. This seems to work fine in a very simply example that just maps a function against a list of items.
RENEWAL_TABLES = [
'Activity',
'CurrentPolicyTermStaus',
'PolicyRenewalStatus',
'PolicyTerm',
'PolicyTermStatus',
'EndorsementPolicyTerm',
'PolicyLifeState'
]
RENEWAL_TABLES_PAIRS = [
(i, 1433 + idx) for idx, i in enumerate(RENEWAL_TABLES)
]
#task(state_handlers=[HANDLER])
def dummy_step():
LOGGER.info('Dummy Step...')
sleep(15)
#task(state_handlers=[HANDLER])
def test_map(table):
LOGGER.info('table: {}...'.format(table))
sleep(15)
with Flow(Path(__file__).stem, SCHEDULE, state_handlers=[HANDLER]) as flow:
first_step = dummy_step()
test_map.map(RENEWAL_TABLES_PAIRS).set_dependencies(upstream_tasks=[first_step])
I see no more than 3 tasks executed at once.
I would really like to understand how to best configure n_workers(single machinne), threads, processes as we expand the size of the single machine out to adding remote workers. I know it depends on my workload, but you could see a combination of things in a single flow where one task does an extract from a database to a csv and another task run a pandas computation. I have seen things online where it seems like it should be threads = number of cpus requested for the documentation, but it seems like you can still achieve parallelism with less than one cpu in Fargate.
Any feedback would be appreciated and could help others looking to leverage Dask in a more ephemeral nature.
Given that Fargate increments from .25 -> .50 -> 1 -> 2 -> 4 for vCPU, I think it’s safe to go with a 1 worker to 1 vcpu setup. However, would be helpful to understand how to choose a good upper limit for number of threads per worker given how Fargate vcpu allotment works.

Why does dask worker fails due to MemoryError on "small" size task? [Dask.bag]

I am running a pipeline on multiple images. The pipeline consist of reading the images from file system, doing so processing on each of them, then saving the images to file system. However the dask worker fails due to MemoryError.
Is there a way to assure the dask workers don't load too many images in memory? i.e. Wait until there is enough space on a worker before starting the processing pipeline on a new image.
I have one scheduler and 40 workers with 4 cores, 15GB ram and running Centos7. I am trying to process 125 images in a batch; each image is fairly large but small enough to fit on a worker; around 3GB require for the whole process.
I tried to process a smaller amount of images and it works great.
EDITED
from dask.distributed import Client, LocalCluster
# LocalCluster is used to show the config of the workers on the actual cluster
client = Client(LocalCluster(n_workers=2, resources={'process': 1}))
paths = ['list', 'of', 'paths']
# Read the file data from each path
data = client.map(read, path, resources={'process': 1)
# Apply foo to the data n times
for _ in range(n):
data = client.map(foo, x, resources={'process': 1)
# Save the processed data
data.map(save, x, resources={'process': 1)
# Retrieve results
client.gather(data)
I expected the images to be process as space was available on the workers but it seems like the images are all loaded simultaneously on the different workers.
EDIT:
My issues is that all task get assigned to workers and they don't have enough memory. I found how to limit the number of task a worker handle at a single moment [https://distributed.readthedocs.io/en/latest/resources.html#resources-are-applied-separately-to-each-worker-process](see here).
However, with that limit, when I execute my task they all finish the read step, then the process step and finally the save step. This is an issues since the image are spilled to disk.
Would there be a way to make every task finish before starting a new one?
e.g. on Worker-1: read(img1)->process(img1)->save(img1)->read(img2)->...
Dask does not generally know how much memory a task will need, it can only know the size of the outputs, and that, only once they are finished. This is because Dask simply executes a pthon function and then waits for it to complete; but all osrts of things can happen within a python function. You should generally expect as many tasks to begin as you have available worker cores - as you are finding.
If you want a smaller total memory load, then your solution should be simple: have a small enough number of workers, so that if all of them are using the maximum memory that you can expect, you still have some spare in the system to cope.
To EDIT: you may want to try running optimize on the graph before submission (although this should happen anyway, I think), as it sounds like your linear chains of tasks should be "fused". http://docs.dask.org/en/latest/optimize.html

Dask scheduler behavior while reading/retrieving large datasets

This is a follow-up to this question.
I'm experiencing problems with persisting a large dataset in distributed memory. I have a scheduler running on one machine and 8 workers each running on their own machines connected by 40 gigabit ethernet and a backing Lustre filesystem.
Problem 1:
ds = DataSlicer(dataset) # ~600 GB dataset
dask_array = dask.array.from_array(ds, chunks=(13507, -1, -1), name=False) # ~22 GB chunks
dask_array = client.persist(dask_array)
When inspecting the Dask status dashboard, I see all 28 tasks being assigned to and processed by one worker while the other workers do nothing. Additionally, when every task has finished processing and the tasks are all in the "In memory" state, only 22 GB of RAM (i.e. the first chunk of the dataset) is actually stored on the cluster. Access to the indices within the first chunk are fast, but any other indices force a new round of reading and loading the data before the result returns. This seems contrary to my belief that .persist() should pin the complete dataset across the memory of the workers once it finishes execution. In addition, when I increase the chunk size, one worker often runs out of memory and restarts due to it being assigned multiple huge chunks of data.
Is there a way to manually assign chunks to workers instead of the scheduler piling all of the tasks on one process? Or is this abnormal scheduler behavior? Is there a way to ensure that the entire dataset is loaded into RAM?
Problem 2
I found a temporary workaround by treating each chunk of the dataset as its own separate dask array and persisting each one individually.
dask_arrays = [da.from_delayed(lazy_slice, shape, dtype, name=False) for \
lazy_slice, shape in zip(lazy_slices, shapes)]
for i in range(len(dask_arrays)):
dask_arrays[i] = client.persist(dask_arrays[i])
I tested the bandwidth from persisted and published dask arrays to several parallel readers by calling .compute() on different chunks of the dataset in parallel. I could never achieve more than 2 GB/s aggregate bandwidth from the dask cluster, far below our network's capabilities.
Is the scheduler the bottleneck in this situation, i.e. is all data being funneled through the scheduler to my readers? If this is the case, is there a way to get in-memory data directly from each worker? If this is not the case, what are some other areas in dask I may be able to investigate?

sidekiq-pro batches don't appear to release redis memory after batches complete

We are using sidekiq pro 1.7.3 and sidekiq 3.1.4, Ruby 2.0, Rails 4.0.5 on heroku with the redis green addon with 1.75G of memory.
We run a lot of sidekiq batch jobs, probably around 2 million jobs a day. What we've noticed is that the redis memory steadily increases over the course of a week. I would have expected that when the queues are empty and no workers are busy that redis would have low memory usage, but it appears to stay high. I'm forced to do a flushdb pretty much every week or so because we approach our redis memory limit.
I've had a series of correspondence with Redisgreen and they suggested I reach out to the sidekiq community. Here are some stats from redisgreen:
Here's a quick summary of RAM use across your database:
The vast majority of keys in your database are simple values taking up 2 bytes each.
200MB is being consumed by "queue:low", the contents of your low-priority sidekiq queue.
The next largest key is "dead", which occupies about 14MB.
And:
We just ran an analysis of your database - here is a summary of what we found in 23129 keys:
18448 strings with 1048468 bytes (79.76% of keys, avg size 56.83)
6 lists with 41642 items (00.03% of keys, avg size 6940.33)
4660 sets with 3325721 members (20.15% of keys, avg size 713.67)
8 hashs with 58 fields (00.03% of keys, avg size 7.25)
7 zsets with 1459 members (00.03% of keys, avg size 208.43)
It appears that you have quite a lot of memory occupied by sets. For example - each of these sets have more than 10,000 members and occupies nearly 300KB:
b-3819647d4385b54b-jids
b-3b68a011a2bc55bf-jids
b-5eaa0cd3a4e13d99-jids
b-78604305f73e44ba-jids
b-e823c15161b02bde-jids
These look like Sidekiq Pro "batches". It seems like some of your batches are getting filled up with very large numbers of jobs, which is causing the additional memory usage that we've been seeing.
Let me know if that sounds like it might be the issue.
Don't be afraid to open a Sidekiq issue or email prosupport # sidekiq.org directly.
Sidekiq Pro Batches have a default expiration of 3 days. If you set the Batch's expires_in setting longer, the data will sit in Redis longer. Unlike jobs, batches do not disappear from Redis once they are complete. They need to expire over time. This means you need enough memory in Redis to hold N days of Batches, usually not a problem for most people, but if you have a busy Sidekiq installation and are creating lots of batches, you might notice elevated memory usage.

How would I spawn Heroku workers to divide and conquer list of keywords?

My Heroku Rails app maintains a large frequently-changing list of keywords.
I want to spawn up N amount of workers that will equally divide up this list of keywords and work on them until they are restarted (I restart them every time the list of keywords changes). Once restarted, they divide up the keywords again and churn away.
For example: Let's say I have 1,000 keywords.
If I spawn up 1 worker, that worker will take 1,000 keywords.
If I spawn up 10 workers, each worker will take 100 keywords.
If I spawn up 1,000 workers, each worker will take 1 keyword.
Workers basically just open a connection with Twitter for their set of keywords and process incoming tweets that match those keywords.
Any ideas on how to set up the Procfile and delegate X keywords between N workers?
Here's a naive/pseudo manual approach just for demonstration. However, I want to be able to spawn up an arbitrary amount of workers that will automatically split the keywords amongst themselves.
Procfile:
keywordstreamer0: bundle exec ruby keyword_streamer.rb 0
keywordstreamer1: bundle exec ruby keyword_streamer.rb 1
keyword_streamer.rb
streamer_id = ARGV.shift # 0 or 1
# Split all keywords into array of two groups and take the group
# that matches this worker id (so the two workers take different groups)
keywords = Keyword.all.split_into_groups_of(2)[streamer_id]
# Example work loop
TwitterStream.track(keywords).each do |incoming_tweet|
process(incoming_tweet)
end
Then, in my app, when I need to restart my keyword workers:
["keywordstreamer0", "keywordstreamer1"].each do |streamer|
restart(streamer)
end
I'd like to instead be able to spawn N amount of these workers but I'm am having trouble parceling out a solution. I'd appreciate any high-level overview suggestions!
If you're just processing one keyword at a time, in no particular order or grouping, you could just use a queue.
Each worker simply fetches the next keyword off the queue (or perhaps the next batch of keywords, for performance), does the work, and then saves the results somewhere. You don't need to worry about partitioning the workload, since the workers will simply ask for more work when they're ready, allowing you to scale to N workers without needing each worker to know about the total size of the available workload.
There are many possible ways you can implement queues for your data. A couple of more specialized ones that I've used before are AMQP and Redis, but that's hardly an exhaustive list.
I'm going to take a guess and say that since you've got Keyword.all in your example code, and you're on Heroku, that you're using postgres. You can also emulate a queue in postgres without too much difficulty, although it obviously won't perform as well as a purpose-built queue.
Here's one way of doing it:
Add a status column to your keywords. It will have 3 values: ready, in-progress, and complete. The default value for the status column is ready.
The pseudocode for your worker would look like this:
loop do
keyword = Keyword.where(:status => "ready").limit(1).first
keyword.update_attributes!(:status => "in-progress")
result = process(keyword)
save_result_somewhere(result)
keyword.update_attributes!(:status => "complete")
end
I've left out a bunch of implementation details like gracefully handling the queue being empty, initial setup of the queue, batching, and so on. But that's the gist of it. This should perform adequately for modest sizes of N, probably at least 10 or more workers. Beyond that you may want to consider a purpose-built queuing technology.
Once your queue is set up, every single worker is identical and autonomous. Just heroku ps:scale worker=N and you're done!

Resources