Unsupervised Image Segmentation based on object shape - image-processing

Is there any unsupervised method ( i.e. not requiring a training dataset) to separate the objects on the figure below based on shape?
I want to get something like that
where the orange lines separate the elongated objects from the "round" ones

This worked for me.
import cv2
import numpy as np
from copy import deepcopy
path = "Image.png"
image = cv2.imread(path, 0)
image_copy = deepcopy(image)
rad = 18
shape_type = cv2.MORPH_RECT
element = cv2.getStructuringElement(shape_type, (2 * rad + 1, 2 * rad + 1), (rad, rad))
image = cv2.dilate(image, element)
image_show = ~cv2.erode(image, element)
backtorgb = cv2.cvtColor(image_copy, cv2.COLOR_GRAY2RGB)
contour, hier = cv2.findContours(image_show, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
for cnt in contour:
area = cv2.contourArea(cnt)
perimeter = cv2.arcLength(cnt,True)
if (area > 12000) & (area / perimeter**2 * 4 * 3.14 > 0.3):
blue = 0
green = 0
red = 255
else:
red = 0
green = 0
blue = 0
cv2.drawContours(backtorgb, [cnt], 0, (blue, green, red), -1)
imS = cv2.resize(backtorgb, (960, 540))
cv2.imshow("image2", imS)
cv2.imwrite("output.png", backtorgb)
cv2.waitKey(0)
The output:

Related

OpenCv Get edge distance to circle center

A bit off an intro, i need to make a visual aid to align sheets against fixed points.
My setup has 3 points, a sheetmetal plate needs to be positioned against these points using a forklift.
Its a gentle task, we cant use brut force to align the sheet, so i want to install camera's to help them align there sheetmetal plate.
Code so far:
import sys
import cv2 as cv
import numpy as np
cap = cv.VideoCapture(0)
val = 50
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
gray = cv.GaussianBlur(gray, (5,5), 0)
rows = gray.shape[0]
circles = cv.HoughCircles(gray, cv.HOUGH_GRADIENT, 1, rows / 8,
param1=100, param2=30,
minRadius=1, maxRadius=30)
edges = cv.Canny(gray,val,val*3,apertureSize = 3)
lines = cv.HoughLines(edges,1.2,np.pi/180,200)
font = cv.FONT_HERSHEY_SIMPLEX
color = (255, 255, 255)
thickness = 2
index = 1
if len(circles[0]) > 2 :
circles = np.uint16(np.floor(circles))
circles2=sorted(circles[0],key=lambda x:x[0],reverse=False)
print (circles2)
for i in circles2:
center = (i[0], i[1])
cv.circle(frame, center, 1, (0, 255, 0), 3)
text = str(index) +' ' + str(i[0]) +' ' + str(i[1])
cv.putText(frame, text, center, font, 1, color, thickness, cv.LINE_AA)
index += 1
cv.imshow("detected circles", frame)
cv.imshow("detected edges", edges)
if cv.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv.destroyAllWindows()
So the points are found, somehow i need to find the first 255 value in edges right 'above' the 2nd and 3th point, and the last 255 value next to the first point
i'm struggling too slice? the array, find the value 255, returns its index, so i can calculate the distance between point and plate.
any ideas on how to get the distance between?
Thank you in advance
I got it.
the code:
import sys
import cv2 as cv
import numpy as np
cap = cv.VideoCapture(0)
val = 50
singleprint = 0
# Dots per millimeter
dpmm = 2
def distance(circle):
# Calculating the distance np.where(array[row, column])
p = 0
if axis == 1:
p = np.where(edges[:,circle[0]] == 255)[0][0]
return (circle[1] - p - circle[2])/dpmm
else:
p = np.where(edges[circle[1],:] == 255)[0][-1]
return (p - circle[0] - circle[2])/dpmm
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
gray = cv.GaussianBlur(gray, (5,5), 0)
rows = gray.shape[0]
circles = cv.HoughCircles(gray, cv.HOUGH_GRADIENT, 1, rows / 8,
param1=100, param2=30,
minRadius=1, maxRadius=30)
edges = cv.Canny(gray,val,val*3,apertureSize = 3)
lines = cv.HoughLines(edges,1.2,np.pi/180,200)
# Text property's
font = cv.FONT_HERSHEY_SIMPLEX
color = (255, 255, 255)
thickness = 2
index = 1
axis = 0
if len(circles[0]) > 2 :
circles = np.uint16(np.floor(circles))
circles2=sorted(circles[0],key=lambda x:x[0],reverse=False)
for i in circles2:
center = (i[0], i[1])
cv.circle(frame, center, 1, (0, 255, 0), 3)
text = str(distance(i))
cv.putText(frame, text, center, font, 1, color, thickness, cv.LINE_AA)
index += 1
axis = 1
cv.imshow("detected circles", frame)
if cv.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv.destroyAllWindows()
Key was learning to use Numpy in a specific row or column
np.where(edges[:,circle[0]] == 255)[0][0]
resource: https://youtu.be/GB9ByFAIAH4?t=1103
Hope this helps others.
Thanks all

Remove coins shadow using opencv

I am trying to count how many coins there are in the image using the latest version of OpenCV, but I am struggling with the shadows.
The Canny Edge detector method is being used but as you can see in the second image, it is not working as expected because of the shadows... Any ideas about how I could deal with this problem?
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (7, 7), 0)
median = np.median(image)
lower = int(max(0, 0.67 * median))
upper = int(min(255, (1.33) * median))
canny = cv2.Canny(blurred, lower, upper)
contours, hierachy = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
coins = cv2.drawContours(image, contours, -1, (0, 255, 0), 2)
cv2.imshow("Coins", coins)
You can use the coin selection by color.
import cv2 as cv
import numpy as np
low_H = 0
low_S = 50
low_V = 0
high_H = 255
high_S = 255
high_V = 255
frame = cv.imread('PzB9I.png')
frame_HSV = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
frame_threshold = cv.inRange(frame_HSV, (low_H, low_S, low_V), (high_H, high_S, high_V))
# filling holes
im_floodfill = frame_threshold.copy()
h, w = frame_threshold.shape[:2]
mask = np.zeros((h+2, w+2), np.uint8)
cv.floodFill(im_floodfill, mask, (0,0), 255);
im_floodfill_inv = cv.bitwise_not(im_floodfill)
mask = frame_threshold | im_floodfill_inv
# find contours
contours, hierachy = cv.findContours(mask, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
coins = cv.drawContours(frame, contours, -1, (0, 255, 0), 1)
cv.imshow("Coins", coins)

Radius of a disk in a binary image

I have binarized images like this one:
I need to determine the center and radius of the inner solid disk. As you can see, it is surrounded by a textured area which touches it, so that simple connected component detection doesn't work. Anyway, there is a void margin on a large part of the perimeter.
A possible cure could be by eroding until all the texture disappears or disconnects from the disk, but this can be time consuming and the number of iterations is unsure. (In addition, in some unlucky cases there are tiny holes in the disk, which will grow with erosion.)
Any better suggestion to address this problem in a robust and fast way ? (I tagged OpenCV, but this is not mandated, what matters is the approach.)
You can:
Invert the image
Find the largest axis-aligned rectangle containing only zeros, (I used my C++ code from this answer). The algorithm is pretty fast.
Get the center and radius of the circle from the rectangle
Code:
#include <opencv2\opencv.hpp>
using namespace std;
using namespace cv;
// https://stackoverflow.com/a/30418912/5008845
cv::Rect findMaxRect(const cv::Mat1b& src)
{
cv::Mat1f W(src.rows, src.cols, float(0));
cv::Mat1f H(src.rows, src.cols, float(0));
cv::Rect maxRect(0,0,0,0);
float maxArea = 0.f;
for (int r = 0; r < src.rows; ++r)
{
for (int c = 0; c < src.cols; ++c)
{
if (src(r, c) == 0)
{
H(r, c) = 1.f + ((r>0) ? H(r-1, c) : 0);
W(r, c) = 1.f + ((c>0) ? W(r, c-1) : 0);
}
float minw = W(r,c);
for (int h = 0; h < H(r, c); ++h)
{
minw = std::min(minw, W(r-h, c));
float area = (h+1) * minw;
if (area > maxArea)
{
maxArea = area;
maxRect = cv::Rect(cv::Point(c - minw + 1, r - h), cv::Point(c+1, r+1));
}
}
}
}
return maxRect;
}
int main()
{
cv::Mat1b img = cv::imread("path/to/img", cv::IMREAD_GRAYSCALE);
// Correct image
img = img > 127;
cv::Rect r = findMaxRect(~img);
cv::Point center ( std::round(r.x + r.width / 2.f), std::round(r.y + r.height / 2.f));
int radius = std::sqrt(r.width*r.width + r.height*r.height) / 2;
cv::Mat3b out;
cv::cvtColor(img, out, cv::COLOR_GRAY2BGR);
cv::rectangle(out, r, cv::Scalar(0, 255, 0));
cv::circle(out, center, radius, cv::Scalar(0, 0, 255));
return 0;
}
My method is to use morph-open, findcontours, and minEnclosingCircle as follow:
#!/usr/bin/python3
# 2018/11/29 20:03
import cv2
fname = "test.png"
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
th, threshed = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
morphed = cv2.morphologyEx(threshed, cv2.MORPH_OPEN, kernel, iterations = 3)
cnts = cv2.findContours(morphed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
cnt = max(cnts, key=cv2.contourArea)
pt, r = cv2.minEnclosingCircle(cnt)
pt = (int(pt[0]), int(pt[1]))
r = int(r)
print("center: {}\nradius: {}".format(pt, r))
The final result:
center: (184, 170)
radius: 103
My second attempt on this case. This time I am using morphological closing operation to weaken the noise and maintain the signal. This is followed by a simple threshold and a connectedcomponent analysis. I hope this code can run faster.
Using this method, i can find the centroid with subpixel accuracy
('center : ', (184.12244328746746, 170.59771290442544))
Radius is derived from the area of the circle.
('radius : ', 101.34704439389715)
Here is the full code
import cv2
import numpy as np
# load image in grayscale
image = cv2.imread('radius.png',0)
r,c = image.shape
# remove noise
blured = cv2.blur(image,(5,5))
# Morphological closing
morph = cv2.erode(blured,None,iterations = 3)
morph = cv2.dilate(morph,None,iterations = 3)
cv2.imshow("morph",morph)
cv2.waitKey(0)
# Get the strong signal
th, th_img = cv2.threshold(morph,200,255,cv2.THRESH_BINARY)
cv2.imshow("th_img",th_img)
cv2.waitKey(0)
# Get connected components
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(th_img)
print(num_labels)
print(stats)
# displat labels
labels_disp = np.uint8(255*labels/np.max(labels))
cv2.imshow("labels",labels_disp)
cv2.waitKey(0)
# Find center label
cnt_label = labels[r/2,c/2]
# Find circle center and radius
# Radius calculated by averaging the height and width of bounding box
area = stats[cnt_label][4]
radius = np.sqrt(area / np.pi)#stats[cnt_label][2]/2 + stats[cnt_label][3]/2)/2
cnt_pt = ((centroids[cnt_label][0]),(centroids[cnt_label][1]))
print('center : ',cnt_pt)
print('radius : ',radius)
# Display final result
edges_color = cv2.cvtColor(image,cv2.COLOR_GRAY2BGR)
cv2.circle(edges_color,(int(cnt_pt[0]),int(cnt_pt[1])),int(radius),(0,0,255),1)
cv2.circle(edges_color,(int(cnt_pt[0]),int(cnt_pt[1])),5,(0,0,255),-1)
x1 = stats[cnt_label][0]
y1 = stats[cnt_label][1]
w1 = stats[cnt_label][2]
h1 = stats[cnt_label][3]
cv2.rectangle(edges_color,(x1,y1),(x1+w1,y1+h1),(0,255,0))
cv2.imshow("edges_color",edges_color)
cv2.waitKey(0)
Here is an example of using hough circle. It can work if you set the min and max radius to a proper range.
import cv2
import numpy as np
# load image in grayscale
image = cv2.imread('radius.png',0)
r , c = image.shape
# remove noise
dst = cv2.blur(image,(5,5))
# Morphological closing
dst = cv2.erode(dst,None,iterations = 3)
dst = cv2.dilate(dst,None,iterations = 3)
# Find Hough Circle
circles = cv2.HoughCircles(dst
,cv2.HOUGH_GRADIENT
,2
,minDist = 0.5* r
,param2 = 150
,minRadius = int(0.5 * r / 2.0)
,maxRadius = int(0.75 * r / 2.0)
)
# Display
edges_color = cv2.cvtColor(image,cv2.COLOR_GRAY2BGR)
for i in circles[0]:
print(i)
cv2.circle(edges_color,(i[0],i[1]),i[2],(0,0,255),1)
cv2.imshow("edges_color",edges_color)
cv2.waitKey(0)
Here is the result
[185. 167. 103.6]
Have you tried something along the lines of the Circle Hough Transform?
I see that OpenCv has its own implementation. Some preprocessing (median filtering?) might be necessary here, though.
Here is a simple approach:
Erode the image (using a large, circular SE), then find the centroid of the result. This should be really close to the centroid of the central disk.
Compute the mean as a function of the radius of the original image, using the computed centroid as the center.
The output looks like this:
From here, determining the radius is quite simple.
Here is the code, I'm using PyDIP (we don't yet have a binary distribution, you'll need to download and build form sources):
import matplotlib.pyplot as pp
import PyDIP as dip
import numpy as np
img = dip.Image(pp.imread('/home/cris/tmp/FDvQm.png')[:,:,0])
b = dip.Erosion(img, 30)
c = dip.CenterOfMass(b)
rmean = dip.RadialMean(img, center=c)
pp.plot(rmean)
r = np.argmax(rmean < 0.5)
Here, r is 102, as the radius in integer number of pixels, I'm sure it's possible to interpolate to improve precision. c is [184.02, 170.45].

Detect Narrow Line in very noise image

I have performed preprocessing steps in an noisy acoustic image and now I need to detect narrow black lines.
Can you think of a better way to detect these lines?
My goal is to detect the line in the red box in this image.
Failed Answer: - This is not a perfect solution but will require further work to make it robust for various images. I noticed that there is very less noise in the black lines, and thus Canny does not found a lot of edges within this region. Code and results below:-
import numpy as np
import cv2
gray = cv2.imread('2.png')
edges = cv2.Canny(gray,10,60,apertureSize = 7)
cv2.imwrite('2-1-edges-10-60.jpg',edges)
kernel = np.ones((5,5),np.uint8)
closeEdges = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
cv2.imwrite('2-2-edges-10-60-dilated-1.jpg',closeEdges)
invertEdges = 255 - closeEdges
cv2.imwrite('2-3-invertedges-10-60.jpg',invertEdges)
minLineLength=100
lines = cv2.HoughLinesP(image=invertEdges,rho=1,theta=np.pi/180, threshold=200,lines=np.array([]), minLineLength=minLineLength,maxLineGap=80)
a,b,c = lines.shape
for i in range(a):
cv2.line(gray, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 1, cv2.LINE_AA)
cv2.imwrite('2-4-houghlines.jpg',gray)
Using connected component on inverse of output image and finding maximum size elements could be helpful.
Another way of approaching this is use of gradient image and directly finding area of small range of gradient magnitude. This approach would be much more flexible as it will not require using fixed threshold values - 10 and 60 as above. Threshold values can be adaptive according to image gradient/you can normalize gradient of image before using hard-coded thresholds.
Better Answer(30-40% accurate)
import numpy as np
import cv2
import os
# Store all images in this folder
path='images-1'
def autocrop(image, threshold=0):
if len(image.shape) == 3:
flatImage = np.max(image, 2)
else:
flatImage = image
rows = np.where(np.max(flatImage, 0) > threshold)[0]
if rows.size:
cols = np.where(np.max(flatImage, 1) > threshold)[0]
image = image[cols[0]: cols[-1] + 1, rows[0]: rows[-1] + 1]
else:
image = image[:1, :1]
return image
def skeleton(img):
size = np.size(img)
skel = np.zeros(img.shape,np.uint8)
element = cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3))
done = False
while( not done):
eroded = cv2.erode(img,element)
temp = cv2.dilate(eroded,element)
temp = cv2.subtract(img,temp)
skel = cv2.bitwise_or(skel,temp)
img = eroded.copy()
zeros = size - cv2.countNonZero(img)
if zeros==size:
done = True
return skel
def gamma_correction(img, correction):
img = img/255.0
img = cv2.pow(img, correction)
return np.uint8(img*255)
def auto_canny(image, sigma=0.33):
# compute the median of the single channel pixel intensities
v = np.median(image)
# apply automatic Canny edge detection using the computed median
lower = int(max(0, (1.0 - sigma) * v))
upper = int(min(255, (1.0 + sigma) * v))
edged = cv2.Canny(image, lower, upper)
# return the edged image
return edged
for file in os.listdir(path):
if file.endswith(".png"):
current = os.path.join(path, file)
img = cv2.imread(current, 0)
print 'processing ' + current
img = autocrop(img, 0)
cv2.imwrite(current + '-0-cropped.jpg', img)
height, width = img.shape[:2]
img = cv2.resize(img, (width, width))
cv2.imwrite(current + '-0-resized.jpg', img)
# cv2.imwrite(current +'-2-auto_canny_default.jpg', auto_canny(img))
# img = cv2.medianBlur(img,5)
# cv2.imwrite(current +'-0-medianBlur.jpg',img)
# th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,11,2)
# cv2.imwrite(current +'-1-threshold_gaussian.jpg',th3)
# laplacian = cv2.Laplacian(img,cv2.CV_64F)
# cv2.imwrite(current + '-3-threshold_gaussian.jpg', laplacian)
#img = cv2.bilateralFilter(img, 3, 3, 5)
edges = cv2.Canny(img,10,20,apertureSize = 5)
cv2.imwrite(current +'-1-edges-10-60.jpg',edges)
kernel = np.ones((3,3),np.uint8)
edges = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
cv2.imwrite(current +'-1-edgesClosed-10-60.jpg', edges)
edges = 255-edges
cv2.imwrite(current +'-2-edgesClosedInverted-10-60.jpg', edges)
im2, contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
imgColor = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
maxArea = 0
for cnt in contours:
if maxArea < cv2.contourArea(cnt):
maxArea = cv2.contourArea(cnt)
for cnt in contours:
rect = cv2.minAreaRect(cnt) #I have used min Area rect for better result
width = rect[1][0]
height = rect[1][1]
if cv2.contourArea(cnt) > int(maxArea/2.5) and ( width < height/2 or height < width/2):
cv2.drawContours(imgColor, cnt, -1, (0,255,0), 1)
cv2.imwrite(current+'-5-Contours.jpg',imgColor)
# edges = skeleton(255-edges)
# cv2.imwrite(current +'-2-skeleton.jpg', edges)
# edges = 255-edges
# minLineLength=int(width/4)
# threshold = 20
# maxLineGap = 1
# rho = 1
# lines = cv2.HoughLinesP(image=edges,rho=rho,theta=np.pi/180, threshold=threshold,lines=np.array([]), minLineLength=minLineLength,maxLineGap=maxLineGap)
# if lines is not None:
# a,b,c = lines.shape
# for i in range(a):
# cv2.line(img, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 1, cv2.LINE_AA)
# cv2.line(edges, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 1, cv2.LINE_AA)
# cv2.imwrite(current+'-5-houghlines.jpg',img)
# cv2.imwrite(current+'-6-houghlines.jpg',edges)
# print 'cool'
# else:
# cv2.imwrite(current+'-5-houghlines.jpg',img)
Also, do check following links:
Detection of Continuous, Smooth and Thin Edges in Noisy Images Using Constrained Particle Swarm Optimisation
http://www.imagemagick.org/discourse-server/viewtopic.php?t=14491
http://answers.opencv.org/question/3454/detecting-thick-edges/

How to detect document from a picture in opencv?

I am trying to design an app similar to camscanner. For that, I have to take an image and then find the document in that. I started off with the code described here - http://opencvpython.blogspot.in/2012/06/sudoku-solver-part-2.html
I found the contours and the rectangular contour with max area should be the required document. For every contour, I am finding an approximate closed PolyDP. Of all the polyDP of size 4, the one with max area should be the required document. However, this method is not working.
The input image for the process is this
I tried to print the contour with max area and this resulted in this (Contour inside letter 'C')
Code:
img = cv2.imread('bounce.jpeg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray,(5,5),0)
thresh = cv2.adaptiveThreshold(gray,255,1,1,11,2)
_, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
def biggestRectangle(contours):
biggest = None
max_area = 0
indexReturn = -1
for index in range(len(contours)):
i = contours[index]
area = cv2.contourArea(i)
if area > 100:
peri = cv2.arcLength(i,True)
approx = cv2.approxPolyDP(i,0.1*peri,True)
if area > max_area: #and len(approx)==4:
biggest = approx
max_area = area
indexReturn = index
return indexReturn
indexReturn = biggestRectangle(contours)
cv2.imwrite('hola.png',cv2.drawContours(img, contours, indexReturn, (0,255,0)))
What is going wrong in this? Is there any other method by which I can capture the document in this picture?
Try this :
output image
import cv2
import numpy as np
img = cv2.imread('bounce.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
invGamma = 1.0 / 0.3
table = np.array([((i / 255.0) ** invGamma) * 255
for i in np.arange(0, 256)]).astype("uint8")
# apply gamma correction using the lookup table
gray = cv2.LUT(gray, table)
ret,thresh1 = cv2.threshold(gray,80,255,cv2.THRESH_BINARY)
#thresh = cv2.adaptiveThreshold(gray,255,1,1,11,2)
_, contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
def biggestRectangle(contours):
biggest = None
max_area = 0
indexReturn = -1
for index in range(len(contours)):
i = contours[index]
area = cv2.contourArea(i)
if area > 100:
peri = cv2.arcLength(i,True)
approx = cv2.approxPolyDP(i,0.1*peri,True)
if area > max_area: #and len(approx)==4:
biggest = approx
max_area = area
indexReturn = index
return indexReturn
indexReturn = biggestRectangle(contours)
hull = cv2.convexHull(contours[indexReturn])
cv2.imwrite('hola.png',cv2.drawContours(img, [hull], 0, (0,255,0),3))
#cv2.imwrite('hola.png',thresh1)
I would do it like this:
Do preprocessing like blur / canny
Extract all lines from the image using the hough line transform (open cv doc).
Use the 4 strongest lines
Try to construct the contour of the document using the four lines
Right now I do not have an OpenCV installed so I cannot try this approach but maybe it leads you in the right directon.

Resources