Represent postfix and prefix increment and decrement in AST and grammar - parsing

I have those rules to build a simple calculator :
statement -> assignment | calculation
assignment -> variable '=' sum end
calculation -> sum end
sum -> product (('+' product)|('-' product))*
product -> factor (('*' factor)|('/' factor))*
factor -> term
term -> variable | number
My problem is how to model the rules for postfix and prefix increment and decrement. How can represent it in this grammar above so that, for example, if I have the assignment :
x=1
j=x++ +2
the result will be j=3 and x=2. How do I do post-increment after assignment?

The simplest grammar change would be to add the new operators to term:
term -> variable
| '++' variable | '--' variable
| variable '++' | variable '--'
| number
The new rules could have been added to factor instead, particularly since factor currently has no point at all and could be removed. However, if you ever add more complicated lvalues than a single variable (array subscripts for example) then that will have to be adjusted. Also, adding the operators to factor would make nonsense like ++2 syntactically possible, or (a+b)++ once you implement parentheses. So, although putting them in some non-terminal other than term is more common and probably more appropriate, it's not necessarily the best solution in this particular case.
The questions about the AST and the evaluation of the AST can't be answered without knowing a lot more about how you structure your ASTs. You're free to build ASTs in any way you feel appropriate, but it's probably worth noting that the AST must be able to distinguish between post- and pre-increment. Either you need to use a different operator symbol for the two cases, or you need some hack (such as the C++ hack of adding a fake operand to one of the two cases).

Related

Validating expressions in the parser

I am working on a SQL grammar where pretty much anything can be an expression, even places where you might not realize it. Here are a few examples:
-- using an expression on the list indexing
SELECT ([1,2,3])[(select 1) : (select 1 union select 1 limit 1)];
Of course this is an extreme example, but my point being, many places in SQL you can use an arbitrarily nested expression (even when it would seem "Oh that is probably just going to allow a number or string constant).
Because of this, I currently have one long rule for expressions that may reference itself, the following being a pared down example:
grammar DBParser;
options { caseInsensitive=true; }
statement:select_statement EOF;
select_statement
: 'SELECT' expr
'WHERE' expr // The WHERE clause should only allow a BoolExpr
;
expr
: expr '=' expr # EqualsExpr
| expr 'OR' expr # BoolExpr
| ATOM # ConstExpr
;
ATOM: [0-9]+ | '\'' [a-z]+ '\'';
WHITESPACE: [ \t\r\n] -> skip;
With sample input SELECT 1 WHERE 'abc' OR 1=2. However, one place I do want to limit what expressions are allowed is in the WHERE (and HAVING) clause, where the expression must be a boolean expression, in other words WHERE 1=1 is valid, but WHERE 'abc' is invalid. In practical terms what this means is the top node of the expression must be a BoolExpr. Is this something that I should modify in my parser rules, or should I be doing this validation downstream, for example in the semantic phase of validation? Doing it this way would probably be quite a bit simpler (even if the lexer rules are a bit lax), as there would be so much indirection and probably indirect left-recursion involved that it would become incredibly convoluted. What would be a good approach here?
Your intuition is correct that breaking this out would probably create indirect left recursion. Also, is it possible that an IDENTIFIER could represent a boolean value?
This is the point of #user207421's comment. You can't fully capture types (i.e. whether an expression is boolean or not) in the parser.
The parser's job (in the Lexer & Parser sense), put fairly simply, is to convert your input stream of characters into the a parse tree that you can work with. As long as it gives a parse tree that is the only possible way to interest the input (whether it is semantically valid or not), it has served its purpose. Once you have a parse tree then during semantic validation, you can consider the expression passed as a parameter to your where clause and determine whether or not it has a boolean value (this may even require consulting a symbol table to determine the type of an identifier). Just like your semantic validation of an OR expression will need to determine that both the lhs and rhs are, themselves, boolean expressions.
Also consider that even if you could torture the parser into catching some of your type exceptions, the error messages you produce from semantic validation are almost guaranteed to be more useful than the generated syntax errors. The parser only catches syntax errors, and it should probably feel a bit "odd" to consider a non-boolean expression to be a "syntax error".

Preferring one alternative

An excerpt of my ANTLR v4 grammar looks like this:
expression:
| expression BINARY_OPERATOR expression
| unaryExpression
| nularExpression
;
unaryExpression:
ID expression
;
nularExpression:
ID
| NUMBER
| STRING
;
My goal is to match the language without knowing all the necessary keywords and therefore I'm simply matching keywords as IDs.
However there are binary operators that take an argument to both sides of the keyword (e.g. keyword ) and therefore they need "special treatment". As you can see I already included this "special treatment" in the expression rule.
The actual problem now consists of the fact that some of these binary operators can be used as unary operators (=normal keywords) as well meaning that the left argument does not have to be specified.
The above grammar can't habdle this case because everytime I tried to implement this I ended up with every binary operator being consumed as a unary operator.
Example:
Let's assume count is a binary operator.
Possible syntaxes are <arg1> count <arg2> and count <arg>
All my attempts to implement the above mentioned case ended up grouping myArgument count otherArgument like (myArgument (count (otherArgument) ) ) instead of (myArgument) count (otherArgument)
My brain tellsme that the solution to this problem is to tell the parser always to take two arguments for a binary operator and if this fails it should try to consume the binary operator as an unary one.
Does anybody know how to accomplish this?
How about something like this:
lower_precedence_expression
: ID higher_precedence_expression
| higher_precedence_expression
;
higher_precedence_expression
: higher_precedence_expression ID lower_precedence_expression
| ID
| NUMBER
| STRING
;
?

Faulty bison reduction using %glr-parser and %merge rules

Currently I'm trying to build a parser for VHDL which
has some of the problems C++-Parsers have to face.
The context-free grammar of VHDL produces a parse
forest rather than a single parse tree because of it's
ambiguity regarding function calls and array subscriptions
foo := fun(3) + arr(5);
This assignment can only be parsed unambiguous if the parser
would carry around a hirachically, type-aware symbol table
which it'd use to resolve the ambiguities somewhat on-the-fly.
I don't want to do this, because for statements like the
aforementioned, the parse forest would not grow exponentially, but
rather linear depending on the amount of function calls and
array subscriptions.
(Except, of course, one would torture the parser with statements like)
foo := fun(fun(fun(fun(fun(4)))));
Since bison forces the user to just create one single parse-tree,
I used %merge attributes to collect all subtrees recursively and
added those subtrees under so called AMBIG nodes in the singleton
AST.
The result looks like this.
In order to produce the above, I parsed the token stream "I=I(N);".
The substance of the grammar I used inside the parse.y file, is
collected below. It tries to resemble the ambiguous parts of VHDL:
start: prog
;
/* I cut out every semantic action to make this
text more readable */
prog: assignment ';'
| prog assignment ';'
;
assignment: 'I' '=' expression
;
expression: function_call %merge <stmtmerge2>
| array_indexing %merge <stmtmerge2>
| 'N'
;
function_call: 'I' '(' expression ')'
| 'I'
;
array_indexing: function_call '(' expression ')' %merge <stmtmerge>
| 'I' '(' expression ')' %merge <stmtmerge>
;
The whole sourcecode can be read at this github repository.
And now, let's get down to the actual Problem.
As you can see in the generated parse tree above,
the nodes FCALL1 and ARRIDX1 refer to the same
single node EXPR1 which in turn refers to N1 twice.
This, by all means, should not have happened and I don't
know why. Instead there should be the paths
FCALL1 -> EXPR2 -> N2
ARRIDX1 -> EXPR1 -> N1
Do you have any idea why bison reuses the aforementioned
nodes?
I also wrote a bugreport on the official gnu mailing
list for bison, without a reply to this point though.
Unfortunately, due to the restictions for new stackoverflow
users, I can't provide no link to this bug report...
That behaviour is expected.
expression can be unambiguously reduced, and that reduced value is used by both possible ambiguous reductions which include the value. Remember that GLR, like LR, is a left-to-right parser. When a reduction action is executed, all of the child reductions have already happened. The effect is not different from the use of a terminal in a right-hand side; the terminal will not be artificially copied in order to produce different instances in the ambiguous productions which use it.
For most people, this would be a feature rather than a bug, and I don't mean that as a joke. Without the graph-structured stack, GLR has exponential run-time. If you really want to do a deep copy of shared AST nodes when you merge parse trees, you will have to do it yourself, but I suggest that you find a way to make use of the fact that the parse forest is really an directed acyclic graph rather than a tree; you will probably be able to take advantage of the lack of duplication.

Overloading multiplication using menhir and OCaml

I have written a lexer and parser to analyze linear algebra statements. Each statement consists of one or more expressions followed by one or more declarations. I am using menhir and OCaml to write the lexer and parser.
For example:
Ax = b, where A is invertible.
This should be read as A * x = b, (A, invertible)
In an expression all ids must be either an uppercase or lowercase symbol. I would like to overload the multiplication operator so that the user does not have to type in the '*' symbol.
However, since the lexer also needs to be able to read strings (such as "invertible" in this case), the "Ax" portion of the expression is sent over to the parser as a string. This causes a parser error since no strings should be encountered in the expression portion of the statement.
Here is the basic idea of the grammar
stmt :=
| expr "."
| decl "."
| expr "," decl "."
expr :=
| term
| unop expr
| expr binop expr
term :=
| <int> num
| <char> id
| "(" expr ")"
decl :=
| id "is" kinds
kinds :=
| <string> kind
| kind "and" kinds
Is there some way to separate the individual characters and tell the parser that they should be treated as multiplication? Is there a way to change the lexer so that it is smart enough to know that all character clusters before a comma are ids and all clusters after should be treated as strings?
It seems to me you have two problems:
You want your lexer to treat sequences of characters differently in different places.
You want multiplication to be indicated by adjacent expressions (no operator in between).
The first problem I would tackle in the lexer.
One question is why you say you need to use strings. This implies that there is a completely open-ended set of things you can say. It might be true, but if you can limit yourself to a smallish number, you can use keywords rather than strings. E.g., invertible would be a keyword.
If you really want to allow any string at all in such places, it's definitely still possible to hack a lexer so that it maintains a state describing what it has seen, and looks ahead to see what's coming. If you're not required to adhere to a pre-defined grammar, you could adjust your grammar to make this easier. (E.g., you could use commas for only one purpose.)
For the second problem, I'd say you need to add adjacency to your grammar. I.e., your grammar needs a rule that says something like term := term term. I suspect it's tricky to get this to work correctly, but it does work in OCaml (where adjacent expressions represent function application) and in awk (where adjacent expressions represent string concatenation).

Recognizing permutations of a finite set of strings in a formal grammar

Goal: find a way to formally define a grammar that recognizes elements from a set 0 or 1 times in any order. Subsequently, I want to parse it and generate an AST as well.
For example: Say the set of valid strings in my language is {A, B, C}. I want to define a grammar that recognizes all valid permutations of any number of those elements.
Syntactically valid strings would include:
(the empty string)
A,
B A, and
C A B
Syntactically invalid strings would include:
A A, and
B A C B
To be clear, defining all possible permutations explicitly in a CFG is unacceptable for my purposes, since larger sets would be impossible to maintain.
From what I understand, such a language fails the pumping lemma for context free languages, so the solution will not be context free or regular.
Update
What I'm after is called a "permutation language", which Benedek Nagy has done some theoretical work on as an extension to context free languages.
Regarding a parser generator, I've only found talk of implementing parsers with a permutation phase (link). Parsers evidently have an exponential lower bound on the size of resulting CFG, and I haven't found any parser generators that support it anyhow.
A sort-of solution to this problem was written in ANTLR. It uses semantic predicates to 'code around' the issue.
Assuming that the set of alternative strings is fixed and known in advance, say of size n, one can come up with a (non context-free) grammar of size O(n!). This is not asymptotically smaller than enumerating all permutations, so I suppose it cannot be considered a good solution. I believe that this grammar can be reformulated as a context-sensitive grammar (although in the form I'm suggesting below it is not).
For the example {a, b, c} mentioned in the question, one such grammar is the following. I'm using lower case letters for terminal symbols and upper case letters for non-terminals, as is customary. S is the initial non-terminal symbol.
S ::= XabcY
XabcY ::= aXbcY | bXacY | cXabY
XabY ::= ab | ba
XacY ::= ac | ca
XbcY ::= bc | cb
Non-terminals X and Y enclose the substring in the production which has not been finalized yet; this substring will eventually be replaced by a permutation of the terminals that are given between X and Y (in some arbitrary order).

Resources