Access Report - sum frtTons only when extendedFreight > 0 in an expression - ms-access-2016

Access Report - sum frtTons only when extFreight > 0 in an expression
Hello, I would like to calculate the sum of frtTons only for rows where the extFreight is > 0.
How do I do this in an expression for the textbox for Grand Total frtTons?

Use an expression like this for a textbox on each line:
=Sgn([extFreight])*[frtTons]
Then sum this textbox.
Or, just sum using this expression:
=Sum(Sgn([extFreight])*[frtTons])

Related

Sybase check if value is numeric

How can I check if the value is numeric?
I tried is numeric but it is returning an error that the function is not found.
Example:
select *isnumeric*("abc") // returns 0 or false
select *isnumeric*("123") // returns 1 or true
A reasonable method is to look for non-digits:
select (case when str like '%[^0-9]%' then 0 else 1 end)
This looks for strings of digits. You can extend it to support negative signs, decimal points, and exponential representation if those are needed.

Bitwise operation alternative in Neo4j cypher query

I need to do a bitwise "and" in a cypher query. It seems that cypher does not support bitwise operations. Any suggestions for alternatives?
This is what I want to detect ...
For example 268 is (2^8 + 2^3 + 2^2) and as you can see 2^3 = 8 is a part of my original number. So if I use bitwise AND it will be (100001100) & (1000) = 1000 so this way I can detect if 8 is a part of 268 or not.
How can I do this without bitwise support? any suggestions? I need to do this in cypher.
Another way to perform this type of test using cypher would be to convert your decimal values to collections of the decimals that represent the bits that are set.
// convert the binary number to a collection of decimal parts
// create an index the size of the number to convert
// create a collection of decimals that correspond to the bit locations
with '100001100' as number
, [1,2,4,8,16,32,64,128,256,512,1024,2048,4096] as decimals
with number
, range(length(number)-1,0,-1) as index
, decimals[0..length(number)] as decimals
// map the bits to decimal equivalents
unwind index as i
with number, i, (split(number,''))[i] as binary_placeholder, decimals[-i-1] as decimal_placeholder
// multiply the decimal value by the bits that are set
with collect(decimal_placeholder * toInt(binary_placeholder)) as decimal_placeholders
// filter out the zero values from the collection
with filter(d in decimal_placeholders where d > 0) as decimal_placeholders
return decimal_placeholders
Here is a sample of what this returns.
Then when you want to test whether the number is in the decimal, you can just test the actual decimal for presence in the collection.
with [4, 8, 256] as decimal_placeholders
, 8 as decimal_to_test
return
case
when decimal_to_test in decimal_placeholders then
toString(decimal_to_test) + ' value bit is set'
else
toString(decimal_to_test) + ' value bit is NOT set'
end as bit_set_test
Alternatively, if one had APOC available they could use apoc.bitwise.op which is a wrapper around the java bitwise operations.
RETURN apoc.bitwise.op(268, "&",8 ) AS `268_AND_8`
Which yields the following result
If you absolutely have to do the operation in cypher probably a better solution would be to implement something like #evan's SO solution Alternative to bitwise operation using cypher.
You could start by converting your data using cypher that looks something like this...
// convert binary to a product of prime numbers
// start with the number to conver an a collection of primes
with '100001100' as number
, [2,3,5,7,13,17,19,23,29,31,37] as primes
// create an index based on the size of the binary number to convert
// take a slice of the prime array that is the size of the number to convert
with number
, range(length(number)-1,0,-1) as index
, primes[0..length(number)] as primes, decimals[0..length(number)] as decimals
// iterate over the index and match the prime number to the bits in the number to convert
unwind index as i
with (split(number,''))[i] as binary_place_holder, primes[-i-1] as prime_place_holder, decimals[-i-1] as decimal_place_holder
// collect the primes that are set by multiplying by the set bits
with collect(toInt(binary_place_holder) * prime_place_holder) as prime_placeholders
// filter out the zero bits
with filter(p in prime_placeholders where p > 0) as prime_placeholders
// return a product of primes of the set bits
return prime_placeholders, reduce(pp = 1, p in prime_placeholders | pp * p) as prime_product
Sample of the output of the above query. The query could be adapted to update attributes with the prime product.
Here is a screen cap of how the conversion breaks down
Then when you want to use it you could use the modulus of the prime number in the location of the bit you want to test.
// test if the fourth bit is set in the decimal 268
// 268 is the equivalent of a prime product of 1015
// a modulus 7 == 0 will indicate the bit is set
with 1015 as prime_product
, [2,3,5,7,13,17,19,23,29,31,37] as primes
, 4 as bit_to_test
with bit_to_test
, prime_product
, primes[bit_to_test-1] as prime
, prime_product % primes[bit_to_test-1] as mod_remains
with
case when mod_remains = 0 then
'bit ' + toString(bit_to_test) + ' set'
else
'bit ' + toString(bit_to_test) + ' NOT set'
end as bit_set
return bit_set
It almost certainly defeats the purpose of choosing a bitwise operation in the first place but if you absolutely needed to AND the two binary numbers in cypher you could do something like this with collections.
with split('100001100', '') as bin_term_1
, split('000001000', '') as bin_term_2
, toString(1) as one
with bin_term_1, bin_term_2, one, range(0,size(bin_term_1)-1,1) as index
unwind index as i
with i, bin_term_1, bin_term_2, one,
case
when (bin_term_1[i] = one) and (bin_term_2[i] = one) then
1
else
0
end as r
return collect(r) as AND
Thanks Dave. I tried your solutions and they all worked. They were a good hint for me to find another approach. This is how I solved it. I used String comparison.
with '100001100' as number , '100000000' as sub_number
with number,sub_number,range(length (number)-1,length (number)-length(sub_number),-1) as tail,length (number)-length(sub_number) as difference
unwind tail as i
with i,sub_number,number, i - length (number) + length (sub_number) as sub_number_position
with sub_number_position, (split(number,''))[i-1] as bit_mask , (split(sub_number,''))[sub_number_position] as sub_bit
with collect(toInt(bit_mask) * toInt(sub_bit)) as result
return result
Obviously the number and sub_number can have different values.

Insertion of value-pair in Hash for division calculation unexpectedly returning 0 in Rails 3.2.1

In Ruby on Rails 3.2.1, I am iterating over the value pairs of a hash, where trsesh_mode is the key and trsesh_count is the value. I want to divide the trsesh_count for each mode of exercise the user had done by the total number of training sessions that user has completed.
Here is the iteration of the hash:
#trsesh_counts.each do |trsesh_mode, trsesh_count|
count = #user_name.training_sessions.count
#weight = trsesh_count / count
#weight is returning 0 for each value iterated into the calculation.
If I convert this calculation into a string and embed the ruby variables like so:
<% = "(#{trsesh_count}) / (#{count})" %>
... I get this output in my view:
(7) / (20)
(12) / (20)
(1) / (20)
where 20 is the count and the numerators are the iterated trsesh_count values.
If it helps, the trsesh_count values are FixNum.
My question is: Why am I getting 0 for output when performing the calculation above (#weight = ...)? How can I fix this?
You are dividing integer numbers, so that the integer division result is zero.
Force one number to float, and it should work fine, like this:
#weight = trsesh_count.to_f / count

Rails average - collect only if value <> 0

I'm using this code to calculate the average of some numbers - note that the rankings column is serialized and contains a hash:
#reviews.collect{|review| review.rankings[label].to_i}.sum.to_f/#reviews.length if #reviews.length > 0
The drawback with this code is this: if one of the values is nil, the average calculates as if it existed as a zero. The problem is basically that the #reviews.length denominator assumes every review has a relevant value.
How do I exclude from the denominator those reviews that don't count?
Thank you very much for your answers. The problem ended up being with the denominator, i.e. the /#reviews.length part. When I used reject on both numerator and denominator, the equation stopped dividing by total length and started dividing by (length - no of nils).
End result - 2 scores [0 and 100] average to 50; [nil and 100] average to 100.
Array#reject to the rescue.
#reviews.reject{|review| review.rankings[label].nil?}.collect{|review| review.rankings[label].to_i}.sum.to_f/#reviews.length if #reviews.length > 0
I would go with that approach (using compact to kill the nils):
rankings = #reviews.map{ |review| review.rankings[label] }.compact
rankings.map(&:to_i).sum.to_f / rankings.count unless rankings.count == 0
if #reviews.length > 0
#reviews.collect{|r| r.rankings[label]}.compact.map(&:to_f).sum / #reviews.length
else
0
end

Constrained Sequence to Index Mapping

I'm puzzling over how to map a set of sequences to consecutive integers.
All the sequences follow this rule:
A_0 = 1
A_n >= 1
A_n <= max(A_0 .. A_n-1) + 1
I'm looking for a solution that will be able to, given such a sequence, compute a integer for doing a lookup into a table and given an index into the table, generate the sequence.
Example: for length 3, there are 5 the valid sequences. A fast function for doing the following map (preferably in both direction) would be a good solution
1,1,1 0
1,1,2 1
1,2,1 2
1,2,2 3
1,2,3 4
The point of the exercise is to get a packed table with a 1-1 mapping between valid sequences and cells.
The size of the set in bounded only by the number of unique sequences possible.
I don't know now what the length of the sequence will be but it will be a small, <12, constant known in advance.
I'll get to this sooner or later, but though I'd throw it out for the community to have "fun" with in the meantime.
these are different valid sequences
1,1,2,3,2,1,4
1,1,2,3,1,2,4
1,2,3,4,5,6,7
1,1,1,1,2,3,2
these are not
1,2,2,4
2,
1,1,2,3,5
Related to this
There is a natural sequence indexing, but no so easy to calculate.
Let look for A_n for n>0, since A_0 = 1.
Indexing is done in 2 steps.
Part 1:
Group sequences by places where A_n = max(A_0 .. A_n-1) + 1. Call these places steps.
On steps are consecutive numbers (2,3,4,5,...).
On non-step places we can put numbers from 1 to number of steps with index less than k.
Each group can be represent as binary string where 1 is step and 0 non-step. E.g. 001001010 means group with 112aa3b4c, a<=2, b<=3, c<=4. Because, groups are indexed with binary number there is natural indexing of groups. From 0 to 2^length - 1. Lets call value of group binary representation group order.
Part 2:
Index sequences inside a group. Since groups define step positions, only numbers on non-step positions are variable, and they are variable in defined ranges. With that it is easy to index sequence of given group inside that group, with lexicographical order of variable places.
It is easy to calculate number of sequences in one group. It is number of form 1^i_1 * 2^i_2 * 3^i_3 * ....
Combining:
This gives a 2 part key: <Steps, Group> this then needs to be mapped to the integers. To do that we have to find how many sequences are in groups that have order less than some value. For that, lets first find how many sequences are in groups of given length. That can be computed passing through all groups and summing number of sequences or similar with recurrence. Let T(l, n) be number of sequences of length l (A_0 is omitted ) where maximal value of first element can be n+1. Than holds:
T(l,n) = n*T(l-1,n) + T(l-1,n+1)
T(1,n) = n
Because l + n <= sequence length + 1 there are ~sequence_length^2/2 T(l,n) values, which can be easily calculated.
Next is to calculate number of sequences in groups of order less or equal than given value. That can be done with summing of T(l,n) values. E.g. number of sequences in groups with order <= 1001010 binary, is equal to
T(7,1) + # for 1000000
2^2 * T(4,2) + # for 001000
2^2 * 3 * T(2,3) # for 010
Optimizations:
This will give a mapping but the direct implementation for combining the key parts is >O(1) at best. On the other hand, the Steps portion of the key is small and by computing the range of Groups for each Steps value, a lookup table can reduce this to O(1).
I'm not 100% sure about upper formula, but it should be something like it.
With these remarks and recurrence it is possible to make functions sequence -> index and index -> sequence. But not so trivial :-)
I think hash with out sorting should be the thing.
As A0 always start with 0, may be I think we can think of the sequence as an number with base 12 and use its base 10 as the key for look up. ( Still not sure about this).
This is a python function which can do the job for you assuming you got these values stored in a file and you pass the lines to the function
def valid_lines(lines):
for line in lines:
line = line.split(",")
if line[0] == 1 and line[-1] and line[-1] <= max(line)+1:
yield line
lines = (line for line in open('/tmp/numbers.txt'))
for valid_line in valid_lines(lines):
print valid_line
Given the sequence, I would sort it, then use the hash of the sorted sequence as the index of the table.

Resources